From First Base: The Sequence of the Tip of the X Chromosome of *Drosophila melanogaster*, a Comparison of Two Sequencing Strategies

Panayiotis V. Benos,^{1,15} Melanie K. Gatt,^{2,11} Lee Murphy,³ David Harris,³ Bart Barrell,³ Concepcion Ferraz,⁴ Sophie Vidal,⁴ Christine Brun,⁴ Jacques Demaille,⁴ Edouard Cadieu,⁵ Stephane Dreano,⁵ Stéphanie Gloux,⁵ Valerie Lelaure,⁵ Stephanie Mottier,⁵ Francis Galibert,⁵ Dana Borkova,⁶ Belen Miñana,⁶ Fotis C. Kafatos,⁶ Slava Bolshakov,^{6,7} Inga Sidén-Kiamos,⁷ George Papagiannakis,⁷ Lefteris Spanos,⁷ Christos Louis,^{7,8} Encarnación Madueño,⁹ Beatriz de Pablos,⁹ Juan Modolell,⁹ Annette Peter,¹⁰ Petra Schöttler,¹⁰ Meike Werner,¹⁰ Fotini Mourkioti,¹⁰ Nicole Beinert,¹⁰ Gordon Dowe,¹⁰ Ulrich Schäfer,¹⁰ Herbert Jäckle,¹⁰ Alain Bucheton,⁴ Debbie Callister,¹¹ Lorna Campbell,¹¹ Nadine S. Henderson,¹¹ Paul J. McMillan,¹¹ Cathy Salles,¹¹ Evelyn Tait,¹¹ Phillipe Valenti,¹¹ Robert D.C. Saunders,^{11,12} Alain Billaud,¹³ Lior Pachter,¹⁴ David M. Glover,^{2,11} and Michael Ashburner^{1,2,16}

¹EMBL Outstation, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK; ²Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK; ³Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; ⁴Montpellier University Medical School, IGH-Institut de Génétique Humaine-CNRS, 34396 Montpellier Cedex 5, France; ⁵UPR 41, CNRS, Recombinaisons Génétiques, Faculte de Medecine, 35043 Rennes Cedex, France; ⁶European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; ⁷Institute of Molecular Biology and Biotechnology, FORTH, GR-71110 Heraklion, Greece; ⁸Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece; ⁹Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, 28049 Madrid, Spain; ¹⁰Max-Planck-Institut für biophysikalische Chemie, Department of Molecular Developmental Biology, D-37070 Göttingen, Germany; ¹¹Department of Biological Sciences, The Open University, Milton Keynes, MK7 6AA, UK; ¹³Fondation Jean Dausset-CEPH (Centre d'Etude du Polymorphisme Humain), 75010 Paris, France; ¹⁴Department of Mathematics, University of California at Berkeley, California 94720-3840, USA

We present the sequence of a contiguous 2.63 Mb of DNA extending from the tip of the X chromosome of *Drosophila melanogaster*. Within this sequence, we predict 277 protein coding genes, of which 94 had been sequenced already in the course of studying the biology of their gene products, and examples of 12 different transposable elements. We show that an interval between bands 3A2 and 3C2, believed in the 1970s to show a correlation between the number of bands on the polytene chromosomes and the 20 genes identified by conventional genetics, is predicted to contain 45 genes from its DNA sequence. We have determined the insertion sites of *P-elements* from III mutant lines, about half of which are in a position likely to affect the expression of novel predicted genes, thus representing a resource for subsequent functional genomic analysis. We compare the European *Drosophila* Genome Project sequence with the corresponding part of the independently assembled and annotated Joint Sequence determined through "shotgun" sequenced in the two projects, we detected three major sequence differences, two of which are probably explained by errors in assembly; the origin of the third major difference is unclear. In addition there are eight sequence gaps within the Joint Sequence. At least six of these eight gaps are likely to be sites of transposable elements; the other two

¹⁵Present address: Department of Genetics, School of Medicine, Washington University, 4566 Scott Avenue,St. Louis, MO 63110 USA. ¹⁶Corresponding author.

E-MAIL m.ashburner@gen.cam.ac.uk; FAX 44-1223-333992.

Article and publication are at www.genome.org/cgi/doi/10.1101/gr.173801.

are complex. Of the 275 genes in common to both projects, 60% are identical within 1% of their predicted amino-acid sequence and 31% show minor differences such as in choice of translation initiation or termination codons; the remaining 9% show major differences in interpretation.

[All of the sequences analyzed in this paper have been deposited in the EMBL-Bank database under the following AL009146, AL009147, AL009188-AL009196, accession nos.: AL009171, AL021067, AL021086, AL021106-AL021108, AL021726, AL021728, AL022017, AL022018, AL022139, AL023873, AL023874, AL023893, AL024453, AL024455-AL024457, AL024485, AL030993, AL030994, AL031024-AL031028, AL031128, AL031173, AL031366, AL031367, AL031581-AL031583, AL031640, AL031765, AL031883, AL031884, AL034388, AL034544, AL035104, AL035105, AL035207, AL035245, AL035331, AL035632, AL049535, AL050231, AL050232, AL109630, AL121804, AL121806, AL132651, AL132792, AL132797, AL133503-AL133506, ALI38678, ALI38971, ALI38972, and Z98269. A single file (FASTA format) of the 2.6-Mb contig is available from ftp://ftp.ebi.ac.uk/pub/databases/edgp/contigs/contig_1.fa.]

Less than 90 years have elapsed since Alfred H. Sturtevant presented the world with the first-ever genetic map of six visible markers on the *X* chromosome of *Drosophila melanogaster* (Sturtevant 1913). The extraordinary achievement of determining the entire euchromatic DNA sequence of *D. melanogaster* (Adams et al. 2000) now gives us the potential to identify every single coding region within this gene-rich region.

The first tentative steps towards sequencing the complete genome of Drosophila were taken 10 years ago with the construction of a physical map of the Xchromosome (Sidén-Kiamos et al. 1990; Madueño et al. 1995) and the explicit declaration of the objective of whole-genome sequencing. Since then, both the European and Berkeley Drosophila Genome Projects (EDGP and BDGP) (Saunders et al. 1989; Kafatos et al. 1990; Rubin 1996, 1998; Louis et al. 1997) and, more recently Celera Genomics, have worked towards the common goal of completing the sequence of the entire genome of this fly. An essentially complete sequence of the euchromatic genome of D. melanogaster has now been published by the Celera Genomics/BDGP/Baylor College of Medicine collaboration with some input from EDGP; in this paper we call this the Joint Sequence (see Methods) (Adams et al. 2000; Myers et al. 2000; Rubin et al. 2000a).

We present an ~2.7 Mb region accurately sequenced and analyzed independently of the Joint Sequence. This is only the second detailed molecular analysis of a genomic sequence of several megabases from Drosophila, and it offers some interesting contrasts with the 3 Mb region of an autosome, whose analysis has been published recently (Ashburner et al. 1999). It also gives an opportunity to compare the results and analysis of a sequence obtained by the widely adopted clone-by-clone approach to those obtained from the whole-genome shotgun approach adopted by Celera and their collaborators (Venter et al. 1998). We also report the collection of ~6 Mb discontinuous sequence from divisions 4 - 10, which was obtained by sequencing at 1.5-fold coverage a collection of 29 BAC clones representing a minimal tiling path.

The tip of the *X* chromosome of *D*. melanogaster is a region of some sentimental, as well as much scientific, interest to geneticists. It includes the locus of the gene white, whose mutation was the first clear visible mutation found in Drosophila (Morgan 1910) and whose study led to the discovery of sex-linked inheritance and, hence, to the proof of the chromosome theory of heredity (Bridges 1916). It also includes a region, between the genes zeste and white, which was intensively studied by Burke Judd and colleagues (Judd et al. 1972) in an attempt to analyze the relationship between polytene chromosome bands and genes. There are two classic genetic complexes at the tip of the chromosome --- the achaete-scute complex, whose phe-notypic effects have long fascinated geneticists and generated much theoretical speculation (Agol 1929; García-Bellido 1979), and the broad complex (Zhimulev et al. 1995). The physical bases for the complexities in genetic analysis are quite different in these two cases (see below). Cytologically, the region includes, of course, the XL telomere, perhaps the best-characterized telomere in Drosophila (Biessmann and Mason 1997) as well as a region of polytene banding complexity that had indicated to Bridges (1935) the presence of a long reverse-repeat (Benos et al. 2000).

The main part of the sequence is contiguous, consisting of a single contig of 2,626,764 bp. The rest consists of a cosmid clone (23E12) that contains a number of *Drosophila* subtelomeric repeats (EMBL accession no. L03284) and thus represents the most distal part of the *X* chromosome. The two parts are separated by an unspecified number of repeats, and together amount to 2,664,670 bp.

RESULTS AND DISCUSSION

Linking the Genetic Map of the *X* Chromosome to a Molecular Framework

A decade ago, the founding members of the EDGP argued the case for constructing an accurate physical map of the genome of *D. melanogaster* linked to the genetic map (Sidén-Kiamos et al. 1990). To this end, cosmid clones were selected by hybridization with PCR-amplified DNA microdissected from each of the 100 individual divisions of the major polytene chromosome arms. A physical map was generated by determining overlaps between the cosmids based on the shared fragments generated by restriction endonuclease digestion (Sulston et al. 1988). The localization of cosmids was verified by in situ hybridization to the polytene chromosomes and by determining STSs of cosmid end sequences (Louis et al. 1997). This physical map, and the cosmid library on which it was based, are available as a public resource (http://www.hgmp. mrc.ac.uk/Biology/descriptions/drosophila.html).

A physical map was also constructed by the BDGP (Kimmerly et al. 1996) based on segments of DNA cloned in a P1 phage vector that were aligned using PCR based STS content mapping. However, it was clear that both the cosmid and P1 maps would be an incomplete resource for sequencing the genome. Moreover, although the YAC map of Ajioka et al. (1991) does give good coverage, in our hands YAC clones were impractical for DNA sequencing purposes. We therefore undertook to build another map based on BAC clones because these vectors can, in principle, accommodate larger inserts of DNA. The generation of these BAC clones, that give an approximately 10-fold coverage of the genome, will be described in detail elsewhere. The library is available as a public resource (http://www. hgmp.mrc.ac.uk/Biology/descriptions/dros_bac.html). Clones from both this and a BAC library of partial EcoRI digestion products of DNA constructed for the BDGP (Hoskins et al. 2000) were physically ordered and linked by hybridization with a total of 647 hybridization probes each of 40 nucleotides in length corresponding to sequences distributed along the length of the X chromosome. The resulting maps, whose full description will also be provided elsewhere, allowed us to determine a minimal tiling path of clones for sequencing purposes. We selected such a minimal tiling path extending through polytene divisions 4-10, and determined the sequence of these clones at ~1.5-fold coverage (http://edgp.ebi.ac.uk/cgi-bin/progress.pl). This provided a skeletal sequence scan of ~6 Mb of the chromosome that was made available to the Celera/BDGP/ Baylor shotgun sequencing project for use as an assembly scaffold.

The accurate sequencing of polytene divisions 1–3 was initiated on a minimal tiling path of cosmid

clones, subsequently extended using the BAC clones to fill gaps in the cosmid map. The clones selected for sequencing are presented in Figure 1A, and the assembled nonredundant sequence can be directly accessed at http://edgp.ebi.ac.uk/cgi-bin/progress.pl, which links to the EMBL-Bank deposits.

General Features of Gene Content

As explained in Methods, we have used two general classes of computational method to predict genes in this chromosome region: similarity-based methods and ab initio methods. Together these two approaches have enabled us to predict 277 protein-coding genes overall, of which 94 (33.9%) had been sequenced previously by the community (Table 1; Figure 1B). A total of 25 genes (9%) were predicted solely by ab initio methods, a lower fraction than in the Adh region (19%). A possible reason for this difference is that we used a stricter criterion for accepting a gene predicted only by an ab initio method than did Ashburner et al. (1999). Of the predicted genes, 205 have matches with ESTs from the BDGP (Rubin et al. 2000b) and NIH (Andrews et al. 2000) projects. The fraction of previously known Drosophila genes that had EST matches (77.1%) is the same as that of the genes predicted by sequence similarity (77.2%), and is very similar to the proportion of matches from the *Adh* region (71%). Assuming that the criteria used to predict genes are adequate, these figures provide a good indication for the proportion of Drosophila genes currently represented in EST collections. Presumably the shortfall reflects mainly that the cDNAs used to generate the ESTs have been derived from a restricted number of developmental stages. The value of ESTs in confirming gene identity and splicing patterns provides a strong argument to extend the generation of EST data to other developmental stages and tissues (Andrews et al. 2000; Rubin et al. 2000b). Based on the analysis of EST hits, we identified nine genes that are alternatively spliced in their coding regions, and thus able to direct the synthesis of two or more different proteins (Table 1, asterisks). It is striking that of the 183 newly predicted genes, 55% have significant similarities with sequences in other organisms thus indicating the extent of conserved function.

The average size of the coding regions of the genes predicted in the tip of the X chromosome is 1.8 Kb, with 2.7 introns per gene. The gene with the highest

Figure 1 Physical maps of the interval 1A–3C. (*A*) Minimal tiling pattern of clones sequenced in divisions 1A–3C. BACR clones are indicated in red; BACN and BACH clones are indicated in green; cosmid clones are indicated in blue; redundant clones sequenced are indicated in pink; a few small regions were sequenced from other clones, these are indicated in yellow. The BACR, BACN, and BACH clones are from the same strain as that sequenced by the BDGP and Celera; the cosmids are from a different strain (see Methods). Scale divisions are 10 Kb. (*B*) Genes, transposable elements, and *P-element* insertions in divisions 1A–3C. Known genes are shown in red; genes with significant protein similarities to nondrosophilid proteins are shown in blue; predicted genes with EST hits are shown in yellow; predicted genes with no EST hits are shown in green; predicted genes with protein motif matches are shown in pink. Transposable elements are shown in orange within the sequence coordinate line. The sites of *P-element* and *EP-element* insertions are 10 Kb (bold) and 1 Kb (regular).

Cytology	Gene symbol	Gene	HMMER	EST	Matching gene(s)	EDGP vs. joint sequence
	FG:23F12.1		PF01019: G glu transpept	GH10105	CG17636	0
	EG:23E12.5			GH15984	CG17617	0
	EG:23E12.2		PF00169: PH PF00620: RhoGAP PF00621: RhoGEF	LD22360	CG17960	В—
	EG:23E12.3				CG17707	0
	EG:BACR37P7.1 EG:BACR37P7.2		PF01762: Galactosyl_T PF00856: SET PF00023: ank	CK01556 LD10743	CG3038 CG2995	0 0
1A8	†EG:BACR37P7.3 EG:BACR37P7.9	†cin	PF00994: MoCF_biosynth PF00106: adh_short	GH09380	CG2945 CG13377	0 A
1A8	EG:BACR37P7.7	ewa	http://www.adin_shore	AF171732	CG3114	B+
	EG:BACR37P7.8	eng	PF00071: ras		CG13375	B-
	EG:BACR37P7.5			bs28b06	CG12470	0
	EG:125H10.1			LP06894	CG3777	0
1B1	EG:125H10.2	Y			CG3757	0
1B1	EG:125H10.3	ac	PF00010: HLH		CG3796	0
1B2	EG:198A6.1	SC	PF00010: HLH		CG3827	0
1B3	EG:198A6.2	l(1)sc	PF00010: HLH		CG3839	0
1B4	EG:EG0001.1	pcl	PF00026: asp		CG13374	0
1B4	EG:165H7.2	ase	PF00010: HLH		CG3258	0
	EG:165H7.1	Cyp4g1	PF00067: p450	GH20504	CG3972	0
1B4	EG:165H7.3	l(1)Bb		LD14543	CG3923	D+*
	EG:171D11.6			LD04586	CG13372 CG18166 CG18273	D*
	EG:171D11.2		PF00664: ABC_membrane PF00005: ABC_tran	LD18126	CG3156	A-
	†EG:171D11.1		PF00171: aldedh	GM07535	CG17896	0
	EG:171D11.5				CG17778	0
1B7	†EG:171D11.3	†svr	PF00246: Zn_carbOpept	LD28490	CG4122 CG18503	D*
	EG:171D11.4; EG:65F1.3	arginase	PF00491: arginase	GH02581	CG18104	C+
1B8	†EG:65F1.2	†elav	PF00076: rrm	HL03451	CG4262	0
	EG:65F1.1			GH24496	CG4293	0
188	EG:65F1.5	Appl	PF02177: A4_EXTRA	HL03850	CG7727	A+
189	EG:118B3.1	vnd	PF00046: homeobox	CU 10 4 4 4 1	CG61/2	0
1010	EG:118B3.2	····	PF00307: CH	GH04661	CG13366	0
IDID	EG:115C2.5 EC:115C2.1	moa(r)	DE00204 pft/P	LPUI 363	CG17020	0
	EG.115C2.1 EC.115C2.12		PF00294: pikb	LP11137	CC18451	0
	EG:115C2.12 EC:115C2.6		PEOOO96: zf-C2H2	LF11709	CG17829	0
1B13	EG:115C2.0	Rnl 36	PE01158: Ribosomal 136e	1001128	CG7622	0
1B13	FG:115C2.2	I(1)IBi		LD09823	CG6189	õ
1B13	EG:115C2.9	Dredd	PF00655: ICE_p10 PF00656: ICE_p20	LD14339	CG7486	B —
1B13	FG:115C2.3	su(s)	1100030. ICL_p20	LD06838	CG6222	0
	EG:115C2.8	50.(5)		GH16756	CG13367	Ă-
	EG:115C2.11			GH22310	CG16982	B+
	EG:115C2.10		PF00856: SET	LD03312	CG13363	C –
1B13	EG:115C2.4	skpA	PF01466: Skp1	LD03188	CG16983	0
1B14-C1	EG:BACR19J1.1	sḋk	PF00041: fn3 PF00047: ig	GM02010	CG5227	B+
	EG:BACR19J1.2		PF00153: mito_carr	LD09021	CG5254	0
	EG:BACR19J1.3			GH28702	CG5273	0
	EG:BACR19J1.4	RpL22	PF01776: Ribosomal_L22e	LP05628	CG7434	0
	EG:34F3.2		PF00784: MyTH4 PF00169: PH	LD11354	CG12467	D
	EG:34F3.1		DE00057	LD26268	CG12467	D
	EG:34F3.8		PF00957: synaptobrevin	LD05/91	CG/359	0
	EG:34F3.10				CG13358	A+ P
	EG:34F3.9				C013359	D —

Table 1. Genes Identified or Predicted in the 1A-3C Interval

(Table continues on pp. 714–718.)

Table 1.	(Continued)					
Cytology	Gene symbol	Gene	HMMER	EST	Matching gene(s)	EDGP vs. joint sequence
1B14-C1	EG:34F3.3	Rbf	PF01858: RB_A	LP07395	CG7413	0
	FG:34F3.4		1101037. Kb_b	LD26306	CG16989	0
	FG:34F3.5			LP04844	CG13360	0
	FG:34F3.7		PF02366: PMT	LP01681	CG12311	Ă- C-
	EG:34F3.6	fz3	PF01534: Frizzled PF01392: Fz		CG16785	A-
	EG:BACR7A4.2			bs33b10	CG3713	0
	EG:BACR7A4.3		PF00089: trypsin		CG11664	0
	EG:BACR7A4.19		PF00651: BTB PF01344: Kelch	LP01394	CG3711	0
	EG:BACR7A4.6			1.82	CG3034	0
	EG:BACR7A4.18		PF00956: NAP_family	GH17085	CG3708	A+
	EG:BAC7A4.20			LP11534	CG3706	0
	EG:BACR7A4.5			LP07093	CG11642	0
	EG:BACR7A4.17			LD33276	CG3704	0
	EG:BACR7A4.16			LD03548	CG3026	0
	EG:BACR7A4.15			GH12139	CG3703	A-
	EG:BACR7A4.14		PF00106: adh_short PF00678: adh_short_C2	LP06734	CG3699	D-*
	EG:BACR7A4.13		PF00083: sugar_tr	GH13765	CG3690	0
	EG:BACR7A4.7		PF02268: TFIIA_gamma	GM03032	CG11639	0
	EG:BACR7A4.12		PF00036: efhand	bs03d05	CG11638	A++
1E1-4	EG:BACR7A4.8	anon-1Ed		LD29918	CG3021	C –
	EG:BACR7A4.11	CDC45L		LD08729	CG3658	0
1E1-4	EG:BACR7A4.9	anon-1Eb		GH11273	CG14630	A-
1E1-4	EG:BACR7A4.10	su(w[a])	PF01805: Surp	SD01276	CG3019	B —
	EG:103E12.2			GH24974	CG14629	0
	EG:103E12.3			LD08339	CG3655	0
	EG:BACR42I17.12		PF00076: rrm		CG14628	0
	EG:BACR42I17.1		PF01652: IF4E	bs10b09	CG11392	B+
	EG:BACR42117.2			LP03214	CG11378	0
	EG:BACR42117.3				CG11384	0
	EG:BACR42117.4			bs31h12	CG11379	0
	EG:BACR42117.5				CG14627	A++
	EG:BACR42117.6				CG14626	A-
	EG:BACR42117.7				CG11380	A++
	EG:BACR42117.8				CG14625	A+
	EG:BACR42I17.9				CG11381	D
					CG14624	
	EG:BACR42117.10			LP08751	CG11382	0
	EG:BACK42I17.11		PF00096: ZT-C2H2	100000	CG11398	0
	EG:33CTT.3			LP06890	CG3638	A+ C
	EG:33CTT.2	12.2	PE00130. h 71P	GIVI06650	CG11405	0
	EG.33CTT.T EG.114D9.1	A3-3	PF00170: DZIP PE00036: efband	GHZ4033	CC11403	0
	EG.114D9.1		PE02181: EH2	1026058	CG14622	Δ
	FG:190F7 1		1102101.1112	LD20050	CG18091	0
	FG:8D8 1			GM13066	CG11411	õ
	FG:8D8 2			1D34263	CG11409	Õ
	FG:8D8 6		PE00583: Acetyltransf	1006467	CG11412	B+
	FG:8D8.8			GM12784	CG11418	0
	EG:8D8.7		PF00335: transmembrane4	LP04678	CT11415	0
	EG:8D8.3		PF00324: aa permeases	LD15480	CG12773	Õ
	EG:8D8.4		permeases	LD08351	CG11417	0
	EG:8D8.5	pna	PF00069: pkinase		CG11420	0
	EG:132E8.1	1.5	PF00076: rrm	LD09340	CG3056	0
1F	EG:132E8.2	SNF1A	PF00069: pkinase	GH05909	CG3051	0
	EG:132E8.3		PF00085: thiored	LD03613	CG3719	0
	EG:132E8.4				CG11448	0
	EG:49E4.1	futsch		GH21135	CG3064	D*
	EG:BACN32G11.1				CG18531	0
	EG:BACN32G11.2			GH10964	CG14785	0

Cytology	Gene symbol	Gene	HMMER	EST	Matching gene(s)	EDGP vs. joint sequence
	EG:BACN32G11.3		PF01535: PPR	LD01992	CG14786	0
	EG:BACN32G11.4		PF00378: ECH	LP07530	CG14787	A-
	EG:BACN32G11.5		PF01926: MMR_HSR1	HL05876	CG14788	0
	EG:BACN32G11.6			GH07929	CG14789	A-
	EG:80H7.10			GH22272	CG14777	0
	EG:80H7.1		PF00089: trypsin		—	
	EG:80H7.2			LD18706	CG14779	0
	EG:80H7.3		PF00089: trypsin	CN110014	CG14780	U
	EG:80H7.4 EC:80H7.11		PF00071: ras		CC14791	B-
	FG:80H7 5		PE01363: EYVE	GM03532	CG14782	0
	20.0017.5		PF00169: PH	GIVIOSSSZ	CG11/02	Ŭ
2B1-2	EG:80H7.6	sta	PF00318: Ribosomal S2	LD27557	CG14792	A-BC+
	EG:80H7.7		PF00060: lig_chan		CG14793	D*
	EG:196F3.1		5-		_	
	EG:196F3.3				CG14795	A+
	EG:196F3.2		PF02214: K_tetra	LD05656	CG14783	C+
	EG:56G7.1		PF01607: Chitin_bind_2		CG14796	0
2B5	†EG:123F11.1;	†br	PF00651: BTB	LP05017	CG11491	0
200	EG:17A9.1; EG:25D2.1	-l	PF00096: zt-C2H2	1012600	662002	0
286	EG:171E4.1	aor		LD12589	CG3093	0
	EG:171E4.4 EC:171E4.2			CK00320	CC3005	
	FG:171F4 3		1100300. EKK		CG3737	0
	FG:73D1.1			LD24507	CG3791	0
2B6-7	EG:9D2.1	b6		HL05401	CG3100	õ
2007	EG:9D2.2	20		GH23439	CG3783	D*
2B6-8	EG:9D2.3	аб		LD13641	CG3771	C –
	EG:9D2.4		PF00089: trypsin		CG3795	0
	EG:4F1.1			GH21860	CG14808	0
	EG:BACN35H14.1	Adar	PF02137: A_deamin PF00035: dsrm	LD31451	CG12598	A+
	EG:137E7.1			LD19625	CG17968	0
	EG:131F2.2		PF00929: Exonuclease		CG14801	A-
	EG:131F2.3			LP07325	CG14812	0
	EG:63B12.10	δCOP		LD30910	CG14813	0
	EG:63B12.6			GM12676	CG14814	A-
	EG:63B12.13			GH20211	CG14802	0
	EG:63B12.5		PF00515: 1PR	GH08/08	CG14815	0
	EG:63B12.9			LD13889	CG14803	B+
	EG:03B12.4 EC:62P12.8		PF00300: PGAM	LD30631	CC14804	0
	EG.63B12.8			CH01621	CG14817	0
	FG:63B12.7		PE00400: WD40	I D02447	CG14805	B+
	EG:63B12.12			LP05103	CG14818	0
2B15	EG:63B12.3	trr	PF00856: SET	GM10003	CG3848	B++
2B15	EG:63B12.2	anon-2Bd	PF00252: Ribosomal_L16	GH05976	CG3109	B+
2B15	EG:86E4.6	arm	PF00514: Armadillo_seg	LD10209	CG11579	A+
	EG:86E4.2		PF01532: Glyco_hydro_47	LD21416	CG3810	C+
	EG:86E4.3		PF00400: WD40		CG17766	A-
0015	EG:86E4.4	15.01		LD27573	CG3480	0
2B15	EG:86E4.1	elŀ-2b∈	PF02020: W2	LD26247	CG3806	0
	EC . 86EA 5		PFOUTSZ: nexapep	CH10454	CC3572	0
	EG. 39F1 1		rrourds: IPrc	1022420	CC11506	0
	EG:39E1.3			LD22420	CG3857	0
	FG:39F1.2			LD09945	CG3587	0
	EG:BACH6115.1			2007713	CG3600	Õ
	EG:133E12.2		PF00104: hormone rec		CG16902	D*
			$PE00105 \neq C4$			
			FF00103. ZI-C4			
	EG:133E12.3		PF01650: Peptidase_C13		CG4406	A+

2C3 †EG-13E12.1 †Actn PF00107: CH HL01581 CG4376 0 2C3 EG-22E5.1 usp PF00103: strend methods LD09973 CG4380 0 2C3 EG-22E5.12 PF00105: str-C4 CG4325 0 CG4322 C+ EG-22E5.10 PF00007: 7m.1 CG4323 CG4323 0 CG4322 C+ EG-22E5.3 PF00007: str.1 CG4323 CG4323 0 CG4325 0 EG-22E5.4 PF00007: str.1 CG4325 CG4326 C+ CG4325 0 EG-22E5.4 PF0007: str.1 CG4033 CG419 A+ CG4045 C+ EG-22E5.4 PF0035: stelske Pf0137: RCT CH0716 CG4041 0 CG4045 C+ 2D3 EG-878.1 Pf-9 Pf0035: SAM CH1732 CG4194 0 D D 2D3 EG-878.1 Pf0138: SFAD binding.4 CH19743 CG385 0 D D D D D D <th>Cytology</th> <th>Gene symbol</th> <th>Gene</th> <th>HMMER</th> <th>EST</th> <th>Matching gene(s)</th> <th>EDGP vs. joint sequence</th>	Cytology	Gene symbol	Gene	HMMER	EST	Matching gene(s)	EDGP vs. joint sequence
2C3 EG.225.1 usp PF00104: Information precision LD09973 CG4380 0 EG.225.12 PF00007: ztr-C1 CG4325 C CG4325 C C C CG4325 C C C CG4325 C C C C CG4325 C	2C3	†EG:133E12.1	†Actn	PF00307: CH PF00036: efhand PF00435: spectrin	HL01581	CG4376	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2C3	EG:22E5.1	usp	PF00104: hormone_rec PF00105: zf-C4	LD09973	CG4380	0
EG:225:10 PF00001: Tm.1 CG:422: CC 4:32:		EG:22E5.12		PF00097: zf-C3HC4		CG4325	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		EG:22E5.11		PF00001: 7tm_1		CG4322	C+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		EG:22E5.10		PF00001: 7tm_1	GM02327	CG4313	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		EG:22E5.8		PF00069: pkinase	GH06888	CG4290	0
EG.225.3 PH0335: Bieske CH1172 CC4199 A+ EG.225.5 F00070: pry_redox LD31238 CG4194 0 EG.225.5 F00707: pry_redox LD31238 CG4194 0 EG.225.5 F00137: RCT CM0716 CG4045 C+ EG.225.9 EG.67N9.2 CG4025 0 LD01561 CG3981 A - 2D3 FG.8ACN25C24.2 †csw P60017: SH2 HL03192 CG3954 0 2D3 EG.8ACN25C24.3 ph-d P600536: SAM CH19743 D* CG3724 0 2D4 EG.8781.4 Pgd Pf00536: SAM CH19743 CG3707 A + 2D6 EG.8781.4 Pgd Pf00067: p450 HL02455 CG3630 0 EG:152A3.7 anon-2Db CG3707 A + CG3630 0 CG3707 A + EG:152A3.1 Nmd3 LD15508 CG3640 0 CG3707 A + EG:152A3.1 Nmd3 Cph0067: p450 HL02445<		EG:22E5.7			LD08665	CG4281	D*
EG:225.5 PF01137: RCT CH07716 CG4061 0 EG:225.5 PF02390: Methyltransf_4 GM07316 CG4045 C+ EG:67A.9.2 EG:67A.9.2 CK00561 CG3981 A - 2D3 EG:BACN25G24.2 Tcsw PF00017: SH2 H03192 CG3954 0 2D3 EG:BACN25G24.3 ph-d PF00536: SAM GH17343 CG3895 A - B - 2D3 EG:BACN25G24.3 ph-d PF00536: SAM GH17343 CG3874 0 2D4 EG:BAR1.5 ph-p PF05036: SAM GH17348 CG3717 0 2D6 EG:8781.4 Pgd PF00367: p450 GH0333 CG3656 0 2D6 EG:8781.7 anon-2Db CG3707 A+ CG3610 0 EG:152A3.7 anon-2Db EG352A3.7 GG40310 CG3460 0 EG:152A3.3 pn EG:152A3.7 GG40100 CG3460 0 EG:152A3.4 Cyp4d2 PF00067: p450 GH09310		EG:22E5.5		PF00355: Rieske PF00070: pyr_redox	GHI1/32	CG4199	A+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		EG:22E5.6			LD31238	CG4194	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		EG:22E5.3		PF01137: RCT	GH07716	CG4061	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		EG:22E3.4		PF02390: Metnyltranst_4	GM01339	CG4045	C+
Listory 2 Listory 2 Listory 2 Listory 2 2D3 †£G:8ACN25G24.2 †csw PF00102: Y_phosphatase PF00122: Y_phosphatase 2D3 £G:8ACN25G24.3 ph-d PF00536: SAM GH0934 CG3954 0 2D3 £G:8ACN25G24.3 ph-d PF00536: SAM GH0934 CG395 A B+ C 2D3 £G:8ACN25G24.3 ph-p PF00536: SAM GH0934 CG3954 0 2D4 £G:8781.3 Pr00536: SAM GH0933 CG3267 A B+ C 2D6 £G:8781.4 Pgd PF00353: SAM GH0333 CG3566 0 2D6 £G:8781.7 anon-2Db CG3727 A CG3621 0 2E1 £G:152A3.7 anon-2Db CG3640 CG3460 0 CG3461 0 2E1 £G:152A3.7 anon-2Db CG3461 0 CG3461 0 2E1 £G:152A3.7 anon-2Db CG3461 0 CG3461 0 2E1 £G:152A3.7		EG:22E3.9			LP10820	CG4025	0
2D3 the construction of the constreading of the constreading of the construction of th		EG:07A9.2 EC:67A9.1			CK00561	CG10905	C = -
Loss Feasibility	203	+FG·BACN/25G24 2	tcsw	PE00017: SH2	HI 03192	CG3954	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205		10511	PF00102: Y phosphatase	11203172	663731	Ū
2D3 EG:8781.5 ph-p PF00536: SAM GH19743 D* 2D6 EG:8781.4 Pgd Pf00393: 6PCD GH1284 CG3826 0 2D6 EG:8781.4 bcn92 CG3717 0 2D6 EG:8781.7 cg3717 0 0 2D6 EG:8781.7 cg3717 0 2D6 EG:8781.7 cg3656 0 EG:152A3.7 anon-20b EG3230 0 EG:152A3.7 anon-20b CG3620 0 EG:152A3.7 anon-20b CG3621 0 EG:152A3.7 anon-20b CG3620 0 EG:152A3.7 anon-20b CG3620 0 EI EG:152A3.7 anon-20b CG3620 0 EI EG:152A3.7 mmd3 EG10384.3 CG3466 A- EI EG:152A3.7 Nmd3 EG3457 B- EI EG:10384.4 msta EG3085.4 CG3290 0 EI EG:10384.1 Vinc PF01044: Vinculin ED1571 EG3288.0 0	2D3	EG:BACN25G24.3	ph-d	PF00536: SAM	GH08934	CG3895	A B+ C+
EG:8781.3 Pgd Pf01565: FAD_binding_4 GH17284 CG3835 0 2D6 EG:8781.6 bcn92 CG377 0 2D6 EG:8781.2 wqh LD29979 CG3707 A+ 2D6 EG:8781.1 Cp4d1 Pf00067: p450 GH01333 CG3666 0 EG:152A3.3 anon-2Db CG3621 0 CG3646 A- EG:152A3.3 anon-2Db CG3646 A- CG3646 A- EG:152A3.3 anon-2Db CG3646 A- CG3646 A- 2E1 EG:152A3.5 pn GM10090 CG3460 A- 2E1 EG:152A3.5 pn GM1090 CG3466 A- 2E3 EG:103B4.3 Mct1 PF01587: MCT LD17911 CG3456 A- 2E3 EG:103B4.4 msa GH20239 CG18033 0 CG3229 CG18033 0 2E3 EG:3088.4 pcx CG3208 CG32288 0 CG3208 <td< td=""><td>2D3</td><td>EG:87B1.5</td><td>, ph-p</td><td>PF00536: SAM</td><td>GH19743</td><td></td><td>D*</td></td<>	2D3	EG:87B1.5	, ph-p	PF00536: SAM	GH19743		D*
2D6 EG:8781.4 Pgd PF00393: 6PGD CH13486 CG3724 0 2D6 EG:8781.2 wapl LD29979 CG3707 A+ 2D6 EG:8781.1 Cyp4d1 PF0067: p450 HU02445 CG3626 0 EG:152A3.7 anon-2Db CG3621 0 CG3621 0 2E1 EG:152A3.6 Cyp4d12 PF00067: p450 CH24265 CG10755 0 2E3 EG:152A3.7 Nm3 LD13746 CG3461 0 0 2E3 EG:10384.3 Mct1 PF01587: MCT LD1643 CG3456 A- 2E3 EG:10384.4 msta CG120229 CG3443 B 2E43 EG:3088.5 fs(1/K10 LD08992 CG3218 0		EG:87B1.3		PF01565: FAD_binding_4	GH17284	CG3835	0
2D6 EG:8781.6 ben92 CG3717 0 2D6 EG:8781.1 wapl LD29979 CG3707 A+ 2D6 EG:8781.1 Gyp4d1 PF00067: p450 GH01333 CG3636 0 EG:152A3.2 Cyp4d14 PF00067: p450 GH09810 CG3646 A- EG:152A3.2 Cyp4d12 PF00067: p450 GH09810 CG3646 A- 2E1 EG:152A3.5 pn GM10090 CG3461 0 2E3 EG:152A3.7 Nmd3 LD13746 CG3460 0 2E3 EG:10384.3 Mc11 PF01587: MCT LP01643 CG3456 A- 2E3 EG:10384.4 msta GH20299 CG3443 B 2E43 EG:3088.4 pcx GH20299 CG3289 0 2E43 EG:3088.7 Or2a CG3208 CG3208 0 2E44 EG:3088.7 Or2a CG3208 CG3288 0 2F1 EG:3088.7 Or2a	2D6	EG:87B1.4	Pgd	PF00393: 6PGD	GH13486	CG3724	0
2D6 EC3781.2 wapl LD29979 CG3707 A+ 2D6 EC3781.1 Cyp4d1 Pf00067: p450 GH01333 CG3656 0 EG:152A3.7 anon-2Db CG3621 0 CG3621 0 EG:152A3.7 anon-2Db CG3621 0 CG3621 0 EG:152A3.7 Cyp4d1 PF00067: p450 GH09810 CG3666 A- ZE1 EG:152A3.6 Cyp4ae1 PF00067: p450 GH09810 CG3466 A- ZE1 EG:152A3.7 Nmd3 LD13746 CG3460 0 ZE3 EG:10384.3 Mct1 PF01587: MCT LP01643 CG3456 A- LD2392 CG18031 D CG18031 D 2 2 EG:10384.4 msta GH20239 CG18033 0 ZE3 EG:10384.1 Winc PF01044: Vinculin LD1577 CG3299 0 ZE3 EG:3088.4 pcx CG3206 CG3218 0 CG3206 CG3218 </td <td>2D6</td> <td>EG:87B1.6</td> <td>bcn92</td> <td></td> <td></td> <td>CG3717</td> <td>0</td>	2D6	EG:87B1.6	bcn92			CG3717	0
2D6 EC:3781.1 Cyp4d1 PF00067: p450 CH01333 CC3656 0 EC:152A3.3 mon-2Db CG3630 0 CG3621 0 EC:152A3.7 anon-2Db CG3630 0 CG3621 0 2E1 EC:152A3.4 Cyp4d14 PF00067: p450 CH09810 CG3646 A - 2E1 EC:152A3.5 pn GM10990 CG3461 0 2E3 EC:152A3.1 Nmd3 LD13746 CG3457 B - 2E3 EC:10384.2 LD13746 CG3457 B - LP02712 CG180331 D 2E3 EC:10384.4 msta GH20239 CG3453 B LP2712 CG3457 B 2E1 EC:3088.4 pcx GH20239 CG3433 B CG3206 CG3228 0 LD1757 CG3208 CG3228 0 LD27929 CG3443 B CG3206 CG3206 CG3206 CG3206 CG3206 CG3206 CG3206 CG3208 CG	2D6	EG:87B1.2	wapl	BE000/7 /50	LD29979	CG3707	A+
Lei 152A3.3 anon-2Db CG3621 0 EG:152A3.7 anon-2Db CG3621 0 EG:152A3.2 Cyp4d14 PF00067: p450 HL05508 CG3621 0 ZE1 EG:152A3.4 Cyp4d2 PF00067: p450 GH09810 CG3666 A- ZE1 EG:152A3.5 pn GM10090 CG3461 0 ZE3 EG:152A3.1 Nmd3 LD13746 CG3460 0 ZE3 EG:10384.3 Mct1 PF01587: MCT LP01643 CG3457 B- ZE3 EG:10384.4 msta GH20239 CG18033 0 ZE3 EG:10384.4 pcx LD27929 CG3443 B ZF1 EG:3088.5 fs(1)/k10 LD27929 CG3228 0 ZF1 EG:3088.7 Or2a CG3206 C C ZF1 EG:3088.3 fs(1)/k10 CG3206 C C ZF1 EG:3088.3 fs(1)/k10 CG3208 CG3193 0 <	2D6	EG:8/BI.I	Сур4ат	PF00067: p450	GH01333	CG3656	0
Lb. 152A3.7 Cityped14 PF00067: p450 HL05508 CG3340 0 2E1 EG:152A3.4 Cyp4d2 PF00067: p450 GH09810 CG3466 A - 2E1 EG:152A3.5 pn GM10090 CG3461 0 2E3 EG:152A3.1 Nmd3 LD13746 CG3460 0 2E3 EG:10384.3 Mct1 PF01587: MCT LP01643 CG3290 0 2E3 EG:10384.4 msta GH20239 CG18031 D 2E3 EG:10384.4 msta GH20239 CG18031 D 2E3 EG:3088.4 pcx LD27929 CG3243 B 2F1 EG:3088.7 fs(1)K10 LD08992 CG3218 0 2F1 EG:3088.7 orca CG3240 C GM10386 CG3191 0 2F1 EG:3088.3 pr00650: CRAL_TRIO GM01086 CG3191 0 GM0320 GG2244 + C - 2F1 EG:3088.6 pr00179: UQ_con		EG:152A3.3 EC:152A2 7	anon 2Dh		TL02445	CC3621	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		EG:152A3.2	Cvn4d14	PE00067: p450	HI 05508	CG3540	0
ZE1 EG:152A3.6 C/p/4ae1 PF00067: p450 CH24265 CG10755 0 ZE1 EG:152A3.5 pn GM10090 CG3461 0 ZE3 EG:152A3.1 Nmd3 LD13746 CG3460 0 ZE3 EG:17E2.1 LD13746 CG3457 B- ZE3 EG:103B4.3 Mct1 PF01587: MCT LP01643 CG3456 A- ZE3 EG:103B4.4 msta GH20239 CG18031 D ZE3 EG:103B4.4 pcx CH21962 CG3243 B- - ZE4 EG:3088.5 fs(1)K10 LD27929 CG3443 B- - ZF1 EG:3088.7 Or2a CG3206 C CG3206 C ZF1 EG:3088.7 Or2a CG3206 CG3078 D ZF1 EG:3088.7 Or2a PF00179: UQ_con LD09991 CG3278 O ZF1 EG:3088.6 PF00400: WD40 LD29959 CG3071 B+ <t< td=""><td>2E1</td><td>EG:152A3.4</td><td>Cvp4d2</td><td>PF00067: p450</td><td>GH09810</td><td>CG3466</td><td>Ă-</td></t<>	2E1	EG:152A3.4	Cvp4d2	PF00067: p450	GH09810	CG3466	Ă-
2E1 EC:152A3.5 pn GM10090 CG3461 0 2E3 EC:152A3.1 Nmd3 LD13746 CG3460 0 2E3 EC:152A3.1 Nmd3 LD13746 CG3457 B- 2E3 EC:103B4.3 Mct1 PF01587: MCT LP01643 CG3456 A - 2E3 EC:103B4.4 msta GH20239 CG18033 0 2E3 EC:103B4.4 msta GH20239 CG3443 B 2F1 EG:3088.2 kz GH21962 CG328 0 2F1 EG:3088.5 fs(1)K10 LD08992 CG3218 0 2F1 EG:3088.7 Or2a CG3206 CG3206 CG3206 2F1 EG:3088.7 Or2a CG3191 0 GH06335 CG3193 0 2F1 EG:3088.1 cm PF00500: CRAL_TRIO GH06335 CG3078 D 2F3 EG:25E8.1 PF00179: UQ con LD09991 CG2924 A + C - CG2879	2E1	EG:152A3.6	Cyp4ae1	PF00067: p450	GH24265	CG10755	0
2E3 EG:152A3.1 Nmd3 LD13746 CG3460 0 2E3 EG:103B4.3 Mct1 PF01587: MCT LP01643 CG3456 A- 2E3 EG:103B4.2 LP02712 CG18031 D 2E3 EG:103B4.1 Winc PF01044: Vinculin LD16157 CG3299 0 2E3 EG:103B4.1 Vinc PF01044: Vinculin LD16157 CG3208 0 2E3 EG:3088.4 pcx LD08922 CG3443 B 2F1 EG:3088.5 fs(1)K10 LD08922 CG3288 0 2F1 EG:3088.1 crn PF02184: HAT LP05055 CG3193 0 2F1 EG:3088.3 FF00400: WD40 LD29992 CG3478 D EG:25E8.3 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.4 PF00179: UQ_con LD09991 CG2924 A+ C - EG:25E8.4 PF00179: UQ_con LD09991 CG2845 O EG:25E8.4 PF001030: DAG_PE-bind GH03557 CG2845 D EG:25E8.4 pf1	2E1	EG:152A3.5	pn	·	GM10090	CG3461	0
EG: 17E2.1 LD17911 CG3457 B – 2E3 EG: 103B4.3 Mct1 PF01587: MCT LP01643 CG3456 A – 2E3 EG: 103B4.4 msta LP02712 CG18031 D 2E3 EG: 103B4.1 Vinc PF01044: Vinculin LD16157 CG3299 O 2E3 EG: 103B4.4 pcx LD27929 CG3443 B – – 2F1 EG: 30B8.4 pcx GH21962 CG3228 O 2F1 EG: 30B8.7 Or2a CG3206 C C 2F1 EG: 30B8.7 Or2a CG3208 CG3193 O 2F1 EG: 30B8.1 crn PF00650: CRAL_TRIO GM01086 CG3191 O 2F3 EG: 25E8.3 PF00400: WD40 LD29959 CG3071 B + 2F6:25E8.4 PF00179: UQ_con LD09959 CG3265 O 2F6 EG:BACH48C10.1 GH19593 CG2865 O 2F6 EG:BACH48C10.6 CG140450 CG14	2E3	EG:152A3.1	Nmd3		LD13746	CG3460	0
2E3 EC: 103B4.3 Mc1 PF01587: MC1 LP01643 CG3456 A- 2E3 EG: 103B4.4 msta CG18033 0 2E3 EG: 103B4.1 Vinc PF01044: Vinculin LD16157 CG3299 0 2E3 EG: 3088.4 pcx GH20239 CG3433 B 2F1 EG: 3088.5 fs(1)/k10 LD27929 CG3436 B 2F1 EG: 3088.5 fs(1)/k10 LD08992 CG3218 0 2F1 EG: 3088.7 Or2a CG3206 C C 2F1 EG: 3088.1 crn PF00650: CRAL_TRIO GM01086 CG3191 0 EG: 258.3 PF00400: WD40 LD29959 CG3071 B+ GH06335 CG2878 D EG: 258.1 PF00179: UQ_con LD09991 CG2824 A+ C - GH4956 CG2879 D EG: 258.4 FG: 2588.4 FG: 2588.4 GH04956 CG2841 A - EG: 258.6 FG: 2586.4 C -	0.50	EG:17E2.1			LD17911	CG3457	В—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2E3	EG:103B4.3	Mct1	PF01587: MC1	LP01643	CG3456	A-
ZE3 EG:10384.1 Vinc PF01044: Vinculin LD16157 CG13033 0 ZE3 EG:3088.4 pcx LD27929 CG3443 B ZF1 EG:3088.2 kz GH21962 CG3228 0 ZF1 EG:3088.5 fs(1)K10 LD8992 CG3218 0 ZF1 EG:3088.7 Or2a CG3206 C ZF1 EG:3088.1 cm PF00650: CRAL_TRIO GM01086 CG3191 0 ZF3 EG:3088.6 PF00650: CRAL_TRIO GM01086 CG3071 B+ EG:25E8.3 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.1 PF00179: UQ_con LD09991 CG2854 O EG:25E8.4 GH04956 CG2865 0 CG14050 0 EG:25E8.4 FG:BACH48C10.1 FF02196: RBD GH03557 CG2845 B+ PF00069: pkinase PF00069: pkinase CG14048 0 CG14045 A- ZF6 EG:BACH48C10.4 FG:BACH7M4.1 FG0505: PDZ SD05785 CG14045 A- -	252	EG:103B4.2	meta		LPUZ/12	CG18031	D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2E3 2E3	EG:103B4.4 EC:103B4.1	Vinc	PE01044: Vinculin		CG18035	0
ZF1 EG:3088.2 kz GH21962 CG3228 0 ZF1 EG:3088.5 fs(1)K10 LD08992 CG3218 0 ZF1 EG:3088.7 Or2a CG3206 C ZF1 EG:3088.3 PF00650: CRAL_TRIO GM01086 CG3191 0 EG:3088.6 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.1 PF00179: UQ_con LD09991 CG2924 A+ C - EG:25E8.1 PF00179: UQ_con GH1566 CG2879 D EG:25E8.4 C CG14050 0 CG14050 0 EG:BACH48C10.2 PH PF00130: DAG_PE-bind GH03557 CG2845 B+ ZF6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.6 PF00168: C2 PF00168: C2 <td< td=""><td>2E3 2E3</td><td>EG. 10304.1 EG. 3088 4</td><td>ncx</td><td>rioro44. vinculin</td><td>1027929</td><td>CG3443</td><td>B – –</td></td<>	2E3 2E3	EG. 10304.1 EG. 3088 4	ncx	rioro44. vinculin	1027929	CG3443	B – –
2F1 EG:3088.5 fs(1)k10 LD08992 CG3218 0 2F1 EG:3088.7 Or2a CG3206 C 2F1 EG:3088.1 cm PF02184: HAT LD08992 CG3218 0 2F1 EG:3088.1 cm PF02184: HAT LP05055 CG3193 0 EG:3088.6 PF00650: CRAL_TRIO GM01086 CG3078 D EG:25E8.3 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.1 PF00179: UQ_con LD09991 CG2924 A+ C- EG:25E8.1 PF0012: HSP70 GH11566 CG2879 D EG:25E8.4 CG:8ACH48C10.1 CG14048 0 CG14050 0 EG:BACH48C10.2 PH PF00130: DAG_PE-bind GH03557 CG2845 B+ 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.6 ptr GH02860 CG2841 A+ EG:BACH48C10.6 ptr GH02860 CG2841 A+ EG:BACH48C10.5 ptr SD05785 CG14047 D <t< td=""><td>2E3</td><td>EG:30B8.2</td><td>kz</td><td></td><td>GH21962</td><td>CG3228</td><td>0</td></t<>	2E3	EG:30B8.2	kz		GH21962	CG3228	0
2F1 EG:30B8.7 Or2a CG3206 C 2F1 EG:30B8.1 crn PF02184: HAT LP05055 CG3193 0 EG:30B8.3 PF00650: CRAL_TRIO GM01086 CG3191 0 EG:30B8.6 PF00650: CRAL_TRIO GM01086 CG3191 0 EG:25E8.3 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.1 PF00179: UQ_con LD09991 CG2244 A+ C - EG:25E8.6 PF0012: HSP70 GH11566 CG2918 0 EG:25E8.4 PF0012: HSP70 GH04956 CG2865 0 EG:25E8.4 PF00130: DAG_PE-bind GH03557 CG2845 B+ EG:BACH48C10.1 PH0 PF00130: DAG_PE-bind GH03557 CG2845 B+ PF02196: RBD PF00199: pkinase CG14048 0 CG14045 A 2F6 EG:BACH48C10.4 Ptr GH02860 CG2841 A+ EG:BACH48C10.4 Ptr GH02860 CG2841 A + EG:BACH7M4.1 PF00168: C2 PF00168: C2 CG14045 A	2F1	EG:30B8.5	fs(1)K10		LD08992	CG3218	0
2F1 EG:30B8.1 cm PF02184: HAT LP05055 CG3193 0 EG:30B8.3 PF00650: CRAL_TRIO GM01086 CG3191 0 EG:30B8.6 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.3 PF00179: UQ_con LD09991 CG2924 A+ C - EG:25E8.1 PF00179: UQ_con LD09991 CG2924 A+ C - EG:25E8.4 PF00179: UQ_con GH11566 CG2879 D EG:25E8.4 GH04956 CG2865 0 CG14050 0 EG:25E8.4 PF00130: DAG_PE-bind GH03557 CG2845 B+ EG:BACH48C10.2 Ph0 PF00130: DAG_PE-bind GH03557 CG2845 B+ 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 PF00069: pkinase GH27724 CG14047 D EG:BACH48C10.4 FG:BACH7M4.1 SD05785 CG14045 A- EG:BACH7M4.1 PF00168: C2 CK101827 CG14045 A- - EG:BACH7M4.4 FG:BACH7M4.4 CG14045 A- C </td <td>2F1</td> <td>EG:30B8.7</td> <td>Or2a</td> <td></td> <td></td> <td>CG3206</td> <td>С</td>	2F1	EG:30B8.7	Or2a			CG3206	С
EG:3088.3 PF00650: CRAL_TRIO GM01086 CG3191 0 EG:3088.6 PF00400: WD40 LD29959 CG3078 D EG:25E8.3 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.3 PF00179: UQ_con LD09991 CG2924 A+ C - EG:25E8.1 PF00179: UQ_con LD09991 CG2924 A+ C - EG:25E8.4 PF00012: HSP70 GH11566 CG2918 0 EG:25E8.4 CG14050 0 CG14050 0 EG:BACH48C10.1 EG:BACH48C10.2 GH04956 CG2854 C - 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind GH03557 CG2845 B+ PF00069: pkinase F602196: RBD PF00069: pkinase CG14048 0 2F6 EG:BACH48C10.6 ptr GH02860 CG2841 A+ EG:BACH48C10.4 ptr SD05785 CG14045 A - - EG:BACH7M4.1 PF00168: C2 PF00168: C2 CK01827 CG14045 A - - EG:BACH7M4.4 F050505: PDZ F02 F02 C </td <td>2F1</td> <td>EG:30B8.1</td> <td>crn</td> <td>PF02184: HAT</td> <td>LP05055</td> <td>CG3193</td> <td>0</td>	2F1	EG:30B8.1	crn	PF02184: HAT	LP05055	CG3193	0
EG:3088.6 FG0400: WD40 LD29959 CG3071 B+ EG:25E8.3 PF00400: WD40 LD29959 CG3071 B+ EG:25E8.2 PF00179: UQ_con LD09991 CG2924 A+ C- EG:25E8.1 PF00012: HSP70 GH11566 CG2879 D EG:25E8.6 GH04956 CG2865 0 EG:25E8.4 EG:BACH48C10.1 GH19593 CG2854 C- EG:BACH48C10.2 GH19593 CG2854 C- 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind GH03557 CG2845 B+ PF00069: pkinase F602196: RBD PF00069: pkinase CG14048 0 CG14048 0 2F6 EG:BACH48C10.4 F00168: C2 CG14047 D D EG:BACH7M4.1 F00168: C2 PF00168: C2 CG14045 A- - EG:BACH7M4.4 F00168: C2 PF00505: PDZ CG14045 A- C- EG:BACH7M4.4 F00505: PDZ CG12496 C- C		EG:30B8.3		PF00650: CRAL_TRIO	GM01086	CG3191	0
EG:25E8.3 PF00400: WD40 ED29959 CG3071 B+ EG:25E8.2 PF00179: UQ_con LD09991 CG2924 A+ C- EG:25E8.1 PF001179: UQ_con GH11566 CG2918 0 EG:25E8.6 CG14050 O CG2879 D EG:25E8.4 EG:BACH48C10.1 CG14050 0 CG14050 0 EG:BACH48C10.2 GH19593 CG2854 C- 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind GH03557 CG2845 B+ PF02196: RBD PF00069: pkinase CG14048 0 CG14048 0 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 F00168: C2 CG14045 A- - EG:BACH7M4.1 F00168: C2 CG14045 A- C EG:BACH7M4.4 PF00505: PDZ CG14045 A- C		EG:30B8.6			GH06335	CG3078	D
EG:25E8.1 PF00179: 00_c011 ED09991 CG2924 A+ C - EG:25E8.1 PF00012: HSP70 GH11566 CG2918 0 EG:25E8.6 CG2879 D CG2879 D EG:25E8.4 GH04956 CG2865 0 EG:BACH48C10.1 GH19593 CG2854 C - 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind GH03557 CG2845 B+ PF00069: pkinase F00069: pkinase CG14048 0 CG14048 0 2F6 EG:BACH48C10.6 ptr GH02860 CG2841 A+ EG:BACH48C10.4 ptr GH02860 CG2841 A+ EG:BACH48C10.4 ptr SD05785 CG14045 A EG:BACH7M4.1 F00168: C2 CK01827 CG14045 A - C - EG:BACH7M4.4 PF00505: PDZ CG12496 C -		EG:25E8.3		PF00400: WD40	LD29959	CG3071	B+
EG:2518.6 CG2879 D EG:25E8.4 GH04956 CG2879 D EG:BACH48C10.1 GH19593 CG2854 C - 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind GH03557 CG2845 B+ 2F6 EG:BACH48C10.5 ptr GH02860 CG14048 0 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 Ff00168: C2 CG14045 A EG:BACH7M4.1 Ff00168: C2 CG14045 A - C - EG:BACH7M4.4 Ff00505: PDZ CG12496 C -		EG:23E8.2 EC:25E8.1		PF00179: UQ_CON PE00012: HSP70	CH11566	CG2924 CC2918	A+ C -
EG:2518.4 GH04956 CG2865 0 EG:8ACH48C10.1 EG:BACH48C10.2 GH04956 CG2854 C - 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind PF02196: RBD PF00069: pkinase GH03557 CG2845 B+ 2F6 EG:BACH48C10.5 ptr CG14048 0 CG14048 0 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 EG:BACH48C10.4 CH19593 CG14045 A - EG:BACH7M4.1 FG0168: C2 CK01827 CG14045 A - EG:BACH7M4.4 PF00505: PDZ CG12496 C -		EG.25E8 6		1100012.113170	GITT500	CG2879	D
EG:BACH48C10.1 CG14050 0 EG:BACH48C10.2 GH19593 CG2854 C - 2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind PF02196: RBD PF00069: pkinase GH03557 CG2845 B+ 2F6 EG:BACH48C10.6 CG14048 0 CG14048 0 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 EG:BACH7M4.1 F00168: C2 CG14045 A - - EG:BACH7M4.2 PF00168: C2 PF00505: PDZ CG14045 A - C - EG:BACH7M4.4 CG12496 C - C C C		EG:25E8.4			GH04956	CG2865	0
2F6 EG:BACH48C10.2 EG:BACH48C10.3 phl PF00130: DAG_PE-bind PF02196: RBD PF00069: pkinase GH19593 GH03557 CG2854 CG2845 C - 2F6 EG:BACH48C10.6 EG:BACH48C10.4 EG:BACH48C10.4 EG:BACH7M4.1 ptr CG14048 GH02860 0 CG2841 A+ 2F6 EG:BACH48C10.4 EG:BACH7M4.1 ptr GH02860 GH02857 CG14045 A - EG:BACH7M4.2 PF00168: C2 PF00505: PDZ CG14045 A - C - EG:BACH7M4.4 CG12496 C - C		EG:BACH48C10.1				CG14050	0
2F6 EG:BACH48C10.3 phl PF00130: DAG_PE-bind PF02196: RBD PF00069: pkinase GH03557 CG2845 B+ 2F6 EG:BACH48C10.6 EG:BACH48C10.5 ptr CG14048 0 2F6 EG:BACH48C10.5 EG:BACH48C10.4 EG:BACH7M4.1 ptr GH02860 GH2724 CG14047 D 2F6 EG:BACH48C10.4 EG:BACH7M4.1 PF00168: C2 PF00505: PDZ CK01827 CG14045 A - C - EG:BACH7M4.4 F00505: PDZ CG12496 C -		EG:BACH48C10.2			GH19593	CG2854	C –
EG:BACH48C10.6 CG14048 0 2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 GH27724 CG14047 D EG:BACH7M4.1 SD05785 CG14045 A EG:BACH7M4.2 PF00168: C2 CK01827 CG14045 A EG:BACH7M4.4 SD05705: PDZ CG12496 C-	2F6	EG:BACH48C10.3	phl	PF00130: DAG_PE-bind PF02196: RBD PF00069: pkinase	GH03557	CG2845	В+
2F6 EG:BACH48C10.5 ptr GH02860 CG2841 A+ EG:BACH48C10.4 GH27724 CG14047 D EG:BACH7M4.1 SD05785 CG14045 A EG:BACH7M4.2 PF00168: C2 CK01827 CG14045 A - C - EG:BACH7M4.4 FG0505: PDZ CG12496 C -		EG:BACH48C10.6				CG14048	0
EG:BACH48C10.4 GH27724 CG14047 D EG:BACH7M4.1 SD05785 CG14045 A EG:BACH7M4.2 PF00168: C2 CK01827 CG14045 A - C - PF00505: PDZ EG:BACH7M4.4 CG12496 C -	2F6	EG:BACH48C10.5	ptr		GH02860	CG2841	A+
EG:BACH7M4.1 SD05785 CG14045 A EG:BACH7M4.2 PF00168: C2 CK01827 CG14045 A - C - PF00505: PDZ EG:BACH7M4.4 CG12496 C -		EG:BACH48C10.4			GH27724	CG14047	D
EG:BACH7M4.2 PF00168: C2 CK01827 CG14045 A - C - PF00505: PDZ CG12496 C -		EG:BACH7M4.1			SD05785	CG14045	A
EG:BACH7M4.4 CG12496 C-		EG:BACH7M4.2		PF00168: C2 PF00505: PDZ	CK01827	CG14045	A- C-
		EG:BACH7M4.4				CG12496	C –

Genome Research www.genome.org 716

Cytology	Gene symbol	Gene	HMMER	EST	Matching gene(s)	EDGP vs. joint sequence
342	FG:BACH7M4 5	at			CG7952	0
343	†FG:BACH59111 1	tko	PE00164 Ribosomal S12	GM03810	CG7925	Ő
5715	FG:BACH59I11.2	1 the	PF00041: fn3	SD01373	CG13756	B+
3A3	EG:BACH59I11.3	Z		02010/0	CG7803	0
	EG:BACR25B3.11	pcan	PF0008: EGF	GM03359	CG7981	D*
		T	PF00047: iq			
			PF00054: laminin_G			
			PF00057: ldl_recept_a			
	EG:BACR25B3.10		PF00047: ig	GM02481	CG7981	D*
	EG:BACR25B3.1		PF00047: ig	GM06086	CG7981	A++ C
			PF00052: laminin_B			
			PF00053: laminin_EGF			
			PF00057: ldl_recept_a			
	EG:BACR25B3.2		PF00057: ldl_recept_a		CG12497	A+ B+
	EG:BACR25B3.3		PF00002: 7tm_2	<u></u>	CG13758	D
	EG:BACR25B3.4		PF01813: ATP-synt_D	GH28048	CG8310	D
	EG:BACR25B3.5			GH02552	CG13759	B+
	EG:BACR25B3.6			LD416/5	CG13/60	A
240	EG:BACR25B3.7	was	PF00400: WD40	LD30385	CG1/43/	0
3A8	EG:BACR25B3.8	egn Kling A	DE00225. kinesin 14	1021015	CG9639	0
2A0	EC.BACRZSBS.9	NIPSA mit(1)15	PF00225: Kinesin 14		CC0000	0
589	EG: DACK/CTU.S	Rzd		LDS1030	CC12761	C I
	$EC \cdot RACP7C10.4$	bzu	PEOO335: transmembrane/	CH15125	CC10742	0
	EG:BACR7C10.0		rioosss. dansmeniblanet	108769	CC9904	0
	EG:BACR7C10.7			LD00/0/	CG13762	8 —
	FG:BACR7C10.2		PE00613. PI3Ka	GH26308	CG10260	D
	2015/1010/07/02		PF00454: PI3 PI4 kinase	0.120000	0010200	2
3B1	EG:155E2.3	sqq	PF00069: pkinas3	GM02018	CG2621	A+
3B2	EG:155E2.2	<i></i> Н <i>ॅ</i> Н3В	PF00010: HLH		CG2655	0
	EG:155E2.5			GH07966	CG2652	0
3B2	†EG:155E2.4	†per	PF00989: PAS	GH01975	CG2647	A- B+
3B2	EG:155E2.1	anon-3B1.2			CG2650	B —
	EG:100G10.7	anon-3Ba	PF0004: AAA	GH01006	CG2658	0
			PF01434: Peptidase_M41			
	EG:100G10.6		PF00628: PHD	HL01595	CG2662	0
	EG:100G10.5	anon-3Bb		LD37122	CG2675	A+
	EG:100G10.3		PF01008: IF-2B	01111100	CG26//	0
	EG:100G10.4			GHIII63	CG2680	B+
	EG:100G10.2			GH02982	CG2681	В-
	EG.100G10.1 EC.100C10.8. EC.05P7.10			LDZ3934	CC2605	0
3R4	EG:9587 9	anon-3Rd		CH08386	CG2093	0
301	FG:95B7.8	fs(1)Yh		0100500	CG2706	0
3C1	EG:95B7.4	$f_{s(1)Ya}$		LD47547	CG2707	Ă-
	EG:95B7.5				CG2709	0
3C1	EG:95B7.6	dwg	PF00096: zf-C2H2	LD08032	CG2711	0
	EG:95B7.3	5		LD05179	CG2713	0
	EG:95B7.7	anon-3Be	PF00096: zf-C2H2	LD39664	CG2712	0
3C2	EG:95B7.2	crm	PF00249: myb_DNA-	LD09365	CG2714	0
			binding			
	EG:95B7.1		PF00804: Syntaxin		CG2715	0
	EG:BACN33B1.2			HL08104	CG2766	D*
					CG2716	
3C2	EG:BACN33B1.1	W	PF00005: ABC_tran	GH06126	CG2759	0
	EG:BACR43E12.1				CG12498	0
	EG:BACR43E12.7			GM07661	CG14416	0
	EG:BACR43E12.6				CG14417	0
	EG:BACR43E12.5		DE005 (0. 77	CU 104 114	CG14417	0
	EG:BACR43E12.4		PF00569: ZZ	GH01442	CG3526	A++
	EG:100G7.6				CG3588	$A C_{+}$
	EG:100G7.3				CG14424	0

Table 1.	(Continued)					
Cytology	Gene symbol	Gene	HMMER	EST	Matching gene(s)	EDGP vs. joint sequence
3C5 3C5	EG:100G7.1 EG:100G7.2 EG:100G7.3	anon-3Ca anon-3Cb			CG18089 CG3591 CG3598	0 0 0

All known or predicted genes have a symbol in the form *EG*:#, where the # indicates the clones on which they were first discovered followed by a dot and integer. Genes previously known are also shown with their FlyBase symbols and, if determined, cytological locations. The EST column indicates a matching EST sequence from either the BDGP collection or B. Oliver's testes-derived EST collection (as submitted to GenBank; see Andrews et al. 2000). Only one CDNA clone name is listed for each gene. The column headed "Matching Gene(s)" indicates the matching gene from the Joint Sequence. The column headed "EDGP vs. Joint Sequence" indicates the result of comparing the EDGP and Joint Sequence at the predicted protein level. In this column, 0 indicates identity or <1% difference in sequence; A, that the sequences differ in their predicted start sites; B, that they differ in their predicted exon or intron. A 'D' indicates that the gene models predicted by us and by the Joint Sequence differ very markedly; an accompanying asterisk indicates that we have evidence that the EDGP model is the more correct (see text). A plus sign indicates the EDGP sequence is longer than the CG sequence; a minus sign indicates that it is shorter. For more details see the supplementary data. Only positive hits of known or predicted proteins to PFAM are shown (see text). A dagger before a gene symbol indicates a gene with alternatively spliced messages.

number of introns is EG:BACR25B3.1 (26 introns in the coding region). The average size of the introns is 475 bp, with the shortest being 26 bp (EG:63B12.3) and the longest being 34,401 bp (sidekick [sdk], EG:BACR19J1.1). The calculated average number of introns per gene in this chromosomal region is consistent with previous studies that have indicated the majority of Drosophila genes contain one or two small introns located near their 5' ends (although exon and intron numbers will have been underestimated as ab initio gene prediction methods will not predict untranslated exons). There are, however, some exceptionally large genes. These include *sdk*, which encodes an immunoglobulin-C2 domain protein, and is required to prevent the"mystery cell" of the developing eye disc differentiating as a photoreceptor (Nguyen et al. 1997). This gene, sequenced previously as a cDNA, covers 60 Kb and includes at least 14 exons. Another very large gene is futsch (EG:49E4.1), covering 18 Kb and encoding a protein of 5327 amino acids predicted to encode a microtubule-associated protein, on the basis of its similarity with human MAP1B (SWISS-PROT:P46821), which is only half the size. Recently Hummel et al. (2000) have shown that *futsch* encodes the well-known Drosophila neural antigen 22C10. Four other genes have large transcription units: Appl, 35.1 Kb; br, 27.7 Kb: EG25B3.1, 20.0 Kb; and csw, 17.4 Kb. The overall GC content of this collection of genes from the tip of the X chromosome is significantly lower (45.5%) than the overall GC content of the genes in the Joint Sequence (56.1%).

One of the surprising results of the analysis of the *Adh* region sequence (Ashburner et al. 1999) was the number of genes predicted to be included within the introns of other genes (8%). These were most frequently, but not exclusively, arranged as anti-parallel

transcription units. The present analysis of the tip of the *X* permits a comparison with another segment of genomic DNA. We predict four nested genes. This corresponds to 1.4 % of all of the genes we identify. This is probably an underestimate, because ab initio gene prediction programs do not predict genes within genes.

One group of duplicated genes worthy of specific mention in this region are the cytochrome P450s, small monooxygenases often involved in the metabolism of xenobiotic compounds. Eighty-seven genes encoding these microsomal or mitochondrial enzymes had been identified in the essentially complete Joint Sequence of D. melanogaster (Nelson 2000). Only two (*l*(*2*)35Fb in the Adh region [Ashburner et al. 1999] and disembodied [Chávez et al. 2000]) have been associated with a mutant phenotype, although polymorphisms at others have implicated them in differential resistance to DDT and other compounds (Berge et al. 1998). One characteristic of the genes encoding these proteins is that they often occur in small clusters, indicating an expansion of the gene family by duplication. In region 1–3 we have identified five cytochrome P450-encoding genes (Cyp4g1, Cyp4d1, Cyp4d2, Cyp4ae1, and *Cyp4d14*); of these, the latter three are in tandem within about 7.5 Kb at 2E1 and Cyp4d1 is some 12 Kb distal at 2D6. The Cyp4g1 (at 1B4) gene appears to be more abundantly transcribed than any other P450 gene in D. melanogaster, at least judging from the large number of its EST sequences (59; Nelson 2000).

We have analyzed all of the known or predicted proteins by several methods, most extensively by BLASTP against data sets derived from SWISS-PROT and TrEMBL sorted by taxonomic origin (see Ashburner et al. 1999). We have also analyzed all of the protein sequences by various methods to detect protein motifs, and domains. Overall, 71% of the known or predicted proteins have a BLASTP match with an expectation of 10^{-7} or less when compared with nondrosophilid protein sequences. Similarly, 137 contain at least one known motif or domain (other than the PROSITE Nuclear Localization Signal profile) as determined by matches against InterPro (http:// www.ebi.ac.uk/interpro/). These numbers are, of course, both preliminary and transitory. All of these data have been communicated to FlyBase and can be found in the supplementary data (see Methods). We have chosen only to present the PFAM hits in Table 1, as an indication of the data obtained.

As we have discussed previously (Benos et al. 2000), examples of 12 different transposable elements were identified within the region analyzed: 412, roo, Doc, FB, jockey, mgd1, Tirant, S-element, 1360, Burdock, blastopia, and yoyo. It is possible that more transposable elements may be present in the region; however, we have not identified them molecularly.

Chromosomal Regions of Particular Interest

The achaete-scute Complex

The achaete-scute complex (AS-C) comprises a region of ~95 Kb (between y and Cyp4g1; chromosomal bands 1B1-4) defined by the physical mapping of >110 achaete (ac) and scute (sc) mutations associated with chromosomal breakpoints or insertions of transposable elements (Campuzano et al. 1985; Ruiz-Gómez and Modolell 1987). ac and sc alleles either suppress formation of combinations of bristles (and other cuticular sensory organs) or cause the generation of ectopic bristles (García-Bellido 1979). Most mutant alleles of these genes are viable, although an adjacent vital genetic function, *lethal-of-scute* (l(1)sc) (Muller 1935), is uncovered by internal deficiencies of the complex such as $Df(1)sc4^Lsc9^R$. Embryos homozygous for these deficiencies have a defective CNS. Another genetic function, asense (ase), has also been mapped within the AS-C (Dambly-Chaudière and Ghysen 1987; Jiménez and Campos-Ortega 1987) and found to be important for the development of the larval external sensory organs. Previous molecular characterization of the AS-C (for review, see Campuzano and Modolell 1992) have shown that the functions defined by genetic analysis correspond to single genes, arranged over 85 Kb in distal-proximal order: ac, sc, l(1)sc and ase. All four genes encode related transcription factors of the bHLH family, which are partially redundant in their functions, being required for epidermal cells to become neural precursors. They have evidently evolved by tandem duplication.

Our new analysis of the sequence in the region between *y* and *Cyp4g1* predicts the existence of only the four *AS-C* genes and the previously known *pepsino*- gen-like (pcl) gene, a nonvital gene located between l(1)sc and *ase*, which is expressed in the larval gut (Campuzano et al. 1985; González 1989; S. Romani, unpubl.). We have not been able to detect the existence of two postulated genes, anon-1Ba (=T7) near sc and anon-1Bc (=T9), located just distal to Cyp4g1 (Villares and Cabrera 1987; Alonso and Cabrera 1988). These genes were also not annotated in the Joint Sequence. A further gene (anon-1Be), predicted previously to be located between y and ac giving rise to several transcripts (5-0.9 Kb) (Chia et al. 1986) present in the nuclei of the embryonic vitellum (L. Balcells and J. Modolell, unpubl.) has also not been confirmed by either genomic annotation study. This is most likely a nonvital gene as a large part of it is deleted in the viable *Df(1)ac1*. Curiously, it harbors within its transcription unit the enhancer that drives ac and sc expression in the proneural cluster that gives rise to the dorsocentral bristles (García-García et al. 1999).

The broad Complex

In region 2B1–10 of the polytene *X* chromosome, an ecdysterone-induced puff forms in the late third instar larva (Becker 1962; Ashburner 1969). A large number of lethal and visible mutations were recovered by Kiss, Zhimulev, and colleagues that mapped to this region (Zhimulev et al. 1995). The visibles included mutations that affected wing morphology (broad alleles) and those that reduced the number of chaetae on the palpus (rdp alleles). Several different lethal complementation groups were characterized and it became clear that the visible alleles were simply hypermorphic alleles of lethal loci. The complementation patterns between all of the available alleles in what became known as the broad complex suggested four loci, br, rdp, l(1)2Bc, and l(1)2Bd, with several mutations failing to complement mutations at more than one of these. This is not, however, the result of a complex of genes, rather of a single gene (broad) with a complex pattern of alternatively spliced transcripts. This gene encodes a family of C2H2 Zinc-finger transcription factors (DiBello et al. 1991), the different isoforms being the products of differentially spliced primary transcripts that share common carboxy-terminal exons. In our analysis, this gene covers nearly 30 Kb and, judging from the available cDNAs and EST sequences, encodes four different isoforms. It is known that these have temporally and spatially different expression patterns (Bayer et al. 1996, 1997; Tzolovsky et al. 1999). The differential effects of individual mutations on these isoforms explains both the different phenotypes and the apparent genetic complexity of the broad locus.

The zeste-white Region

The discovery of polytene chromosomes in the larvae of *Drosophila* in the early 1930's was a major event in

the history of genetics. These chromosomes are characterized by a nonperiodic pattern of darkly staining bands and lightly staining interbands, reflecting differences in the degree of DNA packing. These patterns are both colinear with the genetic map, as proven by Bridges (1937) and extraordinarily stable; they can be recognized in species that have diverged many millions of years ago. The detailed maps of Bridges (see Lefevre 1976; Sorsa 1988) enumerated 5072 polytene chromosome bands (and, hence, interbands). Bridges suggested, somewhat tentatively, that there may be a one-to-one correspondence between these bands and genes, a hypothesis that became known as the "one band/one gene hypothesis". A prediction of this hypothesis was that Drosophila had ~5000 genes. This idea was apparently supported by estimates of the number of vital loci on the X chromosome, ~1000 or ~5000 for the genome as a whole (Lea 1955; Lefevre and Watkins 1986). Further apparent confirmation of the one band/one gene hypothesis came from a number of attempts to "saturate" small regions of the genome with mutations, and hence estimate the number of genes in that region (Alikhanian 1937). Most famous of these experiments was that of Judd and students (Judd et al. 1972; Young and Judd 1978) who studied a small region of the distal X chromosome between bands 3A2 and 3C2. By saturation mutagenesis in this 16-band region, Judd and colleagues, and subsequent studies (e.g., Lim and Synder 1974) defined 20 genes, of which 15 were vital. A number of other studies also concluded that the ratio between gene and band number was about one (Zhimulev 1999). It is now clear that, although the number of vital loci in *Drosophila* is indeed ~5000, the use of lethal mutations to define genes results in a substantial underestimate; only about one-third of genes are vital.

The complete sequence of the tip of the *X* chromosome now gives us the chance to review the important study of Judd and colleagues with a molecular perspective (see also Judd's own recent historical review, Judd 1998). The region between the genes *giant* and *white* studied by Judd et al. (the *zeste-white* region) is 360 Kb in length and is predicted to contain 45 genes (Fig. 2). It is indeed remarkable that conventional genetic analyses had identified 20 of these. Of these 20, 12 can be placed directly on the genetic map, by virtue of identity of sequence; the remaining eight genes, known only from lethal mutations, have not been sequenced independently.

Unraveling the famous *zeste-white* region in the ultimate detail of its complete DNA sequence leaves major questions concerning the chromomeric structure of polytene chromosomes unanswered, of course. The banding pattern is attributable to aperiodicities in the packing ratio of the DNA, associated with proteins, in chromatin. Does this pattern have any functional significance whatsoever? No answer to this question can yet be given. How is the banding pattern deter-

Figure 2 The *zeste-white* interval. The top is a reproduction of Figure 5 from Judd et al. (1972) showing the polytene chromosome region 3A–3C and the complementation groups discovered by mutational analysis. Below this projections are made onto the interval 2100 Kb to 2480 Kb of the EDGP sequence showing the correspondence between the genetic analysis and the genes known or predicted in this region from sequence analysis.

720 Genome Research

mined? At one level the answer to this is obvious, by the DNA sequence. We have already described an inverted repeat sequence in the chromosomal DNA flanking the broad complex that could account for the unusual chromosomal banding pattern of this region (Benos et al. 2000). However, more subtle aspects of DNA sequence may define the domains of the majority of polytene chromosome bands, and the full answer to this problem will require considerable further analysis.

P-element Insertions

The majority of *P*-element screens to have been carried out to date have been performed on the autosomes. Spradling and colleagues (1999) have described their attempts to consolidate a number of such P-element collections, including a large collection of lethal P-element insertions on the second chromosome (Török et al. 1993). Similarly, the EDGP have described a collection of lethal insertions on chromosome 3 (Deak et al. 1997). We have begun to generate a comparable collection of *P*-element insertion mutants on the X chromosome in anticipation of their value for functional genomics. The initial group of mutants corresponds to ~500 lethal insertions that have been mapped by hybridization of *P-element* probes to polytene chromosomes in situ. The characterization of this collection will be presented elsewhere. We have localized the insertion sites for 64 P-element-induced lethal mutations that map to divisions 1-3, and determined the gene(s) whose function is likely to be affected by each insertion (Table 2). We have carried out a similar computational analysis on a collection of random EPelement insertions sequenced by the BDGP (Rørth et al. 1998). Forty-seven of these had been mapped to divisions 1-3 by in situ hybridization; this is a density of one element per 55 Kb, about twice that found for EP-elements in the Adh region (1/108 Kb). This difference in density is not due to the existence of major hotspots for insertion of *EP-elements* on the X chromosome tip, nor to a higher proportion of the insertions on the X tip being outwith genes (in both regions ~47% of *EP-element* insertions are within genes).

From a total of 111 *P-element* insertions that we have located within the region analyzed, 41% fall in regions in which they are expected to affect the expression of genes already known, whereas 50% are expected to affect the expression of predicted genes. These expectations are based on the positions of the *P-element* insertion either within transcribed regions or within 5 Kb 5' to these. Some insertions might affect two different genes, one on either side of the insertion (Table 2). Only 13 elements or clusters of elements map more distantly, 7–33 Kb 5' to the nearest known or predicted gene (footnotes in Table 2; of these, five elements or groups were selected as lethal, but may or may not cause the lethality).

Comparison with the Joint Sequence

The determination of the sequence and gene annotation of chromosomal divisions 1–3 was completed and submitted to the EMBL-Bank by February 7, 2000, six weeks before the publication and release of the annotated Joint Sequence of the *D. melanogaster* genome in March 2000 (Adams et al. 2000). Although preexisting gene features were taken into account during the analysis of the Joint Sequence, these are essentially independent annotation experiments that can be compared. Moreover, direct comparison of the nucleotide sequence determined by the EDGP with the Joint Sequence, allows one to assess some of the strengths and weaknesses of the two different sequencing strategies. We have compared both individual gene predictions and the overall sequence between these two studies.

Comparison of Gene Predictions

We have identified 277 protein coding genes in the region 1A-3C, including 94 genes that had been known previously. There are 275 genes common to both studies; two, namely EG:80H7.1 and EG:196F3.1, have no corresponding prediction in the Joint Sequence. Neither of these two predictions are very strong (in terms of their GeneFinder and/or Genscan scores; see Methods), but both contain trypsin protein motifs (EG:196F3.1 has only a PROSITE match whereas EG:80H7.1 has both PROSITE and PFAM matches). There are 33 genes predicted on the Joint Sequence that are absent from the EDGP annotation. Some (13) of these predictions were also seen in the EDGP analysis but were excluded due to their low scores and lack of other supporting evidence (see Methods). We have examined the data for the remaining 20 and consider these to be overpredictions in the Joint Sequence, for a variety of reasons (see supplementary data).

We have carefully compared the known or predicted amino acid sequence of all genes between the annotated Joint Sequence and our analysis (Table 1). At the level of their predicted proteins, 60% of the 275 genes in common are identical or differ by no more than 1% of their amino-acid residues (class 0); 31.3% have one or more minor differences, for example in the choice of ATG or stop codon or in an internal exon (classes A-C); 8.7% (24 genes) have major differences in their structure between the two studies (class D). We have analyzed these 24 in detail; for 10 of them we cannot make a decision, based on the available data, as to which interpretation is the better. However, for the remaining 14 (i.e., 5.1% of the total number of genes) the EDGP model is the more correct, based on the EST data. (Note that the Joint Sequence analysis did not use all available ESTs, as noted in Methods.) Some of the class C differences (Table 1) in gene models may reflect different splice variants of the same gene.

Insertion line	EMBL-Bank accession no.	Cytology	Cosmid or BAC	Hits to gene
l(1)G0142	AJ299992	1B1-2	BACR37P7	cin
I(1)G0399	AJ299993		cos171D11	EG:171D11.6
EP(1)1320	AQ0/318/	1B5-6	COSI/IDII	EG:171D11.1
EP(1)1398	AQ073214	185-6		EG:T/TDTT.T
EP(1)0330	AQU25525	1D/-0 1D7 10		SVI alay and graingsa
I(1)G0319 I(1)C0031	AJ299994 AJ200006	1D7-10 1B	C0303F1 cos65E1	elay and arginase
FP(1)1117	AO025390	1B7-8	cos65F1	elay and arginase
EP(1)0452	AO025344	1B7-8	cos65F1	elay and arginase
l(1)G0471	AI299997	1B11-14	cos115C2	Between RpL36 and I(1)Bi
EP(1)1412	AQ025449	1B12-14	cos115C2	Dredd
EP(1)1216	AQ254762	1B13-14	cos115C2	EG:115C2.10
I(1)G0037	AJ300000	1C	cos115C2	skpA
l(1)G0109	AJ299999	1C	cos115C2	skpA
l(1)G0058	AJ299998	1C	cos115C2	skpA
l(1)G0389	AJ300001	1C	cos115C2	skpA
EP(1)0369	AQ025326	1C1-3	BACR19J1	sdk
EP(1)1467	AQ025484	1C1-3	BACR19J1	EG:BACR19J1.3
I(1)G0115	AJ300002	1C1-3	BACR19J1	RpL22
I(1)G0422	AJ300003		BACRI9JI	RpL22
I(I)G0451	AJ300004		BACRI9JI	RpL22
EP(1)1600	AQ025529	1D1-2	BACR/A4	
EP(1)1498	AQU73221	1D1-2	BACR7A4	
I(1)G0152 I(1)C0452	AJ200005	ID		EG:BACK/A4.0
1(1)00432	AJ300008	 1 F		EU.DACK/A4.5 EC.BACD7AA 15
FD(1)1302	AJ300008 AO025435	1E1 2	BACR7A4 BACR7A4	apon 1Ed
EP(1)1594	AQ025455 AQ025523	1F3_4	BACR42117	3
FP(1)0773	AQ025325 AQ025356	1E3-4	BACR42I17 BACR42I17	4
EP(1)1543	AO073253	1E3-4	BACR42I17	4
EP(1)1615	AO025541	1E3-4	BACR42117	4
EP(1)1443	AO254774	1E3-4	BACR42I17	4
EP(1)1312	AQ073181	1E3-4	BACR42I17	EG:BAC42I17.10
EP(1)1090	AQ025382	1E3-4	cos33C11	EG:33C11.3
EP(1)1325	AQ073191	1E3-4	cos33C11	EG:33C11.3
EP(1)0964	AQ025366	1E3-4	cos33C11	EG:33C11.3
EP(1)1542	AQ073252	1F1-2	cos114D9	5
l(1)G0302	AJ300009	—	cos190E7	6
EP(1)1336	AQ073199	1F1-2	cos8D8	EG:8D8.1
l(1)G0105	AJ300010	1F1	cos8D8	EG:8D8.8
EP(1)1419	AQ025455	2A1-2	cos132E8	—/ 50 04 04 00 00 11 5
I(1)G0431	AJ300011	2A 2D1 4	BACN32GTT	EG:BACN32G11.5
I(T)G0044	AJ300013	2B1-4	COS80H7	EG:80H7.2
I(1)G0012	AJ300012	ZAT-Z		EG:80H7.2
I(1)G0130 I(1)C0120	AJ300013	2D1-4 2D1 4	C0560H7	sta
1(1)(0)129	AJ300014 AJ300016	201-4 2R1_4	cos80H7	sta
FP(1)1515	AO073234	2B1-4 2B3-4	cos1749	hr
l(1)G0318	AI300017	2B1-8	cos17A9	br
l(1)G0401	AI300018	2B1-8	cos17A9	br
l(1)G0018	AI300019	2B1-4	cos17A9	br
I(1)G0042	AJ300020	2B1-8	cos17A9	br
I(1)G0284 ⁸	AJ300021	2B1-8	cos9D2	a6
	AJ300022			
l(1)G0051	AJ300023	2B	cos131F2	EG:63B12.10
l(1)G0450	AJ300024	2B	cos131F2	EG:63B12.10
l(1)G0301	AJ300025	2B	cos131F2	EG:63B12.10
EP(1)1444	AQ025468	2B13-14	cos63B12	EG:63B12.4
EP(1)1190	AQ025400	2B13-14	cos63B12	EG:63B12.12
I(1)G0355	AJ300026	2C1-2	cos63B12	trr
1(1)G0192	AJ300027	2B	cos63B12	arm
I(1)G0234	AJ300264	2B7-10	COS63B12	arm
I(1)G0410 I(1)C0220	AJ300028	2012 C2	COSODE4	um Rotwoon FC-96F4.2 and FC-96F4
I(1)G0220 ED(1)1222	AJ300029	2013-CZ	CUSODE4	9 between EG:86E4.2 and EG:86E4.
EP(1)1232 ED(1)0427	AU254703	2010-10 201 2	C0539E1	 EC • 1 2 2 E 1 2 2
Er(1)0427	AU025357	201-2	COST33E12	EG:TSSET2.S
I(1)G0014 I(1)C0500	AJ300031	201-2	COST33E12	east
I(1)C0100	AJ200022	201-2	COST33E12	Acto
(1)00100	AJJUUUJJ		COSTOSEIZ	ALLII

722 Genome Research www.genome.org

Insertion line	EMBL-Bank accession no.	Cytology	Cosmid or BAC	Hits to gene		
l(1)G0077	AJ300034	2C	cos22E5	Actn		
EP(1)1193	AQ025401	2C7-8	cos22E5	usp		
EP(1)1529	AQ073244	2C7-8	cos22E5	Between EG:22E5.11 and EG:22E5.10		
EP(1)1631	AQ025553	2C7-8	cos22E5	Between EG:22E5.11 and EG:22E5.10		
l(1)G0360	AJ300037	2C7-D4	cos67A9	Between EG:67A9.2 and EG:67A9.1		
l(1)G0310	AJ300038	2D	cos67A9	Between EG:67A9.2 and EG:67A9.1		
l(1)G0066	AJ300039	2C	cos67A9	Between EG:67A9.2 and EG:67A9.1		
l(1)G0333	AJ30040	_	cos67A9	Between EG:67A9.2 and EG:67A9.1		
l(1)G0158	AJ300035	2D1-2	cos67A9	EG:67A9.1		
Ì(1)G0170	AJ300041	2D1-2	BACN25G24	CSW		
Î(1)G0171	AJ300042	2C7-D2	BACN25G24	CSW		
Ì(1)G0458	AJ300043	2E	cos87B1	ph-d		
l(1)G0385	AJ300044	2E	cos87B1	Pgd		
EP(1)1460	AQ025479	2F1-2	cos103B4	Between Vinc and pcx		
EP(1)0426	AQ025336	2F1-2	cos30B8	рсх		
l(1)Ġ0144	AI300045	2F	cos25E8	'EG:25E8.3		
ÈP(1)1596	AQ025525	2F1-2	cos25E8	EG:25E8.2		
EP(1)1125	AQ254758	2F4-5	cos25E8	EG:25E8.4		
EP(1)1606	AQ025534	2F4-5	cos25E8	EG:25E8.4		
l(1)G0226	AI300046	2F	cos25E8	EG:25E8.4		
Ì(1)G0475	AI300047	3A1-2	BACH48C10	phl		
ÈP(1)1605	AO025533	3A1-2	BACH48C10	ptr		
EP(1)1174	AO254760	3A1-2	BACH7M4	EG:BACH7M4.2		
EP(1)1385	AO025430	3A3-4	BACR25B3	10		
EP(1)1447	AO025470	3A3-4	BACR25B3	pcan		
EP(1)1619	AO025543	3A3-4	BACR25B3	pcan		
I(1)G0023	AI300049	3A1-4	BACR25B3	11		
I(1)G0374	AI300050	3A1-4	BACR25B3	11		
ÈP(1)1160	AO025397	3A3-4	BACR25B3	11		
l(1)G0377	AI300053	3A1-4	BACR25B3	11		
l(1)G0211	AI300052	3A1-4	BACR25B3	11		
l(1)G0412	AI300056	3A3-4	BACR25B3	11		
l(1)G0271	AI300055	3A3-4	BACR25B3	11		
I(1)G0362	AI300057	3A1-4	BACR25B3	12		
I(1)G0251	AI300060	343-4	BACR25B3	FG:BACR25R3 7		
FP(1)0804	A0025360	3A5-6	BACR25B3	eah ¹³		
FP(1)1379	AO073212	3B1-2	BACR7C10	saa ¹⁴		
EP(1)1576	A0025509	348-9	BACR7C10	saa ¹⁴		
1(1)G0335	AI300062	3B1-2	BACR7C10	sag ¹⁴		
1(1)G0263	AI300061	3B1-2	BACR7C10	sag ¹⁴		
I(1)G0183	A1300063	341-4	BACR7C10	599 Saa ¹⁴		
1(1)C0055	AJ300064	381.2	BACR7C10	sgg sgg ¹⁵		
ED(1)1262	AJ300004 AO025410	201-2	COC155E2	Botwoon EC:155E2 5 and nor		
LF(1)1302	AQ023419	SDI-Z	COSTACEZ	between EU. 135E2.5 and per		

A list of the P-element insertions from the EP collection (Rørth et al. 1998) and the Göttingen screen (see Methods) in region 1A-3C of the X chromosome. For each element we show the EMBL-Bank accession no. of its flanking sequence, its cytological location, the corresponding cosmid or BAC (see Fig. 1A), and the gene predicted, on the basis of its position, to be mutant (see text).

¹*EP*(1)1600 lies ~19 Kb from the 5' end of *EG*:34F3.1. ²*EP*(1)1498 lies ~30 Kb from the 5' end of *EG*:BACR7A4.6.

 ${}^{3}EP(1)1594$ lies ~11 Kb from the 5' end of EG:BACR42117.2. 4 These four EP-elements lie between two genes: ~5 Kb from the 5' end of EG:BACR42117.1 and ~7 Kb from the 5' end of EG:BACR42I17.2.

 $^{5}EP(1)1542$ lies between the 3' ends of EG:114D9.1 and EG:114D9.2. It is ~33 Kb from the 5' end of EG:8D8.1.

⁶/(1)G0302 lies at the 3' end of EG:190E7.1. It is ~14 Kb from the 5' end of EG:114D9.2.

⁷EP(1)1419 lies ~19 Kb from the 5' end of EG:132E8.3.

⁸I(1)G0284 contains two P-elements 40 Kb apart.

 ${}^{(1)}_{222}$ lies ~11.5 Kb from the 5' end of EG:39E1.3. ${}^{10}_{2P}(1)1232$ lies ~15 Kb from the 5' end of EG:BACH59/11.2.

¹¹This group of six *P-elements* plus one *EP-element* lie ~10 Kb from the 5' end of *EG:BACR25B3.1*.

 $^{12}I(1)G0362$ lies ~19 Kb from the 5' end of *EG:BACR25B3.2* $^{13}EP(1)0804$ lies ~7 Kb from the 5' end of *egh*.

¹⁴This group of two *EP-elements* plus three *P-elements* lie ~16 Kb from the 5' end of sgg.

¹⁵*I*(1)G0055 lies ~12.5 Kb from the 5' end of sgg.

Since the submission of version 1.0 of the Joint Sequence, some 263 "new" genes from across the ge-

Figure 3 Sequence comparisons. A comparison of EDGP sequence of the tip of the X chromosome with that of the Drosophila Joint Sequence in the same region. The comparison was made using the MUMmer program (see Methods). The Gen-Bank accession numbers corresponding to the Joint Sequence are shown on the left (AE003417–AE003425); note that this is part of a unitig (Myers et al. 2000). The blocks indicate regions of ≥ 1 Kb present in one sequence but not the other. The position and length of each block of sequence ≥ 1 Kb that is unique to one sequence is shown; each GenBank accession is numbered to the *left* of the unitig, the corresponding base position within the EDGP sequence is shown in italics to the *right* of the unitig. The EDGP sequence is numbered continuously. The length of each block of unique sequence is in parentheses. The nature of these sequence segments is shown in the center (note that a segment may include sequences in addition to those identified here). The segments corresponding to transposable elements are indicated in orange; those corresponding to known genes are red; a gray "neck" depicts a sequence interrupted by a large block of n's of length N (nN). The Greek superscripts $(\alpha, \beta, \gamma, \varepsilon, \delta)$ refer to the class of sequence difference (see text). Note that there are an additional nine transposable elements in the EDGP sequence that are not seen to differ in the Joint Sequence.

nome have been sequenced by the community as a whole (and submitted to EMBL-Bank, GenBank, or to

DDBJ). Of these, some 53% are essentially identical in their protein coding regions to the Joint Sequence predictions (M. Ashburner, unpubl.). It is of some interest that both these community data and the EDGP data indicate that ~55% of the proteins predicted by the Joint Sequence are essentially correct. This is a minimum figure, because it takes no account of alternative splice forms or the fact that some of the new community data represent only partial sequences.

Overall Sequence Comparison

The Joint Sequence for region 1A-3C is found on nine GenBank entries (Fig. 3). We have compared it to the contiguous EDGP sequence using the MUMmer program of Delcher et al. (1999) (Fig. 3). At the nucleotide level, the differences between our sequence and that of the Joint Sequence in this region are of two types: small indels and large (1 Kb or more) blocks of difference. Thirty large blocks of sequence are present in only one of the sequences. Ten of these blocks occur at identical nucleotide positions in both the Joint and EDGP sequences (Fig. 3). The null hypothesis is that these pairs of blocks are independent. As will be shown below, this is probably not true for all. Excluding these, the difference between the two studies at the nucleotide level is 3.03% (*n* = 2,568,355 common nucleotides). This figure may seem high, but over half (56%) of the EDGP sequence was from clones derived from a very different strain from that used for the Joint Sequence. We have partitioned this difference into that seen in known or predicted coding exons, known or predicted introns, and other sequences; the figures are 0.90%, 2.29%, and 3.98%, respectively.

Most of the 30 blocks of sequence that appear to be absent from one or other sequence are either regions that have not been elucidated fully in the Joint Sequence, or correspond to transposable elements of variable location and/or length. In particular, 17 blocks in one or the other sequence correspond to recognizable transposable elements of variable length and/or location ($^{\alpha}$ in Fig. 3). These include two *roo* elements of different length found at the same position (nucleotide 572,960) in both sequences; five *roo* elements of variable location; and 10 single occurrences of other transposable element families at unique locations (*BEL*, 412, *FB4*, *I*, 412-like and mgd1 in the Joint Sequence, and Doc, Tirant, Burdock, and FB in the EDGP Sequence). It should be noted that two of the long runs of *n* in the Joint Sequence correspond to transposable elements in the EDGP Sequence (see below). The 17 differences in transposable elements are not surprising, as the majority of the two sequences were derived from two quite different fruitfly strains. In the EDGP sequence we have identified 18 transposable elements or fragments of elements and at least 7 of these differ in position in the Joint Sequence.

Ten of the 30 blocks are long gaps in the Joint Sequence ($^{\beta}$, $^{\gamma}$, $^{\varepsilon}$ in Fig. 3), represented in the GenBank accessions by long runs of n, with a total estimated length of 39,938 nucleotides. For four of the 10 gaps (β) , the length of the gap in the Joint Sequence is considerably larger than the corresponding region in the EDGP sequence; for example the run of 4722 *n*'s at position 1,245,921 corresponds to 102 bp in the EDGP sequence. We presume the reason for this is that the gap in the Joint Sequence represents a transposable element. Indeed, two gaps ($^{\varepsilon}$) are caused by transposable elements: The 6353-bp gap at 2,294,896 corresponds to a 6062-bp Burdock element in the EDGP sequence, and the 8060-bp gap at 2,511,915 corresponds to a roo element in the EDGP sequence. Of the four remaining gaps (γ) , two are complex (at 237,007 bp and 556,147 bp) and cannot be explained simply; one corresponds to the *ph-d/ph-p* gene duplication (see below), and the final gap, at 2,011,597 bp will be discussed below.

The remaining three long blocks ($^{\delta}$ in Fig. 3) of the 30 that differ between the two sequences are informative, and will be discussed more fully. Two are only found in the EDGP sequence and are clearly the result of misassemblies in the Joint Sequence. The first of these is just 3' to the Actn gene and is 4.7-Kb long; the probable explanation for it is that the Joint Sequence has failed to properly assemble a duplicated sequence that includes a partial duplication of the predicted gene EG:133E12.4. This duplication was first indicated by the matches of EST sequences (e.g., EMBL accession no. AA202518, EMBL accession no. AA696909) to both an exon of EG:133E12.4 and to a region between this gene and Actn. The duplication is 4777 bp in length and the two copies are only mismatched over a 77-bp internal gap (1.5% mismatch). The second is in the region of the duplicate gene pair *ph-d* and *ph-p*; the Joint Sequence has an incorrect model for *ph-p*. That this region includes a long tandem repeat is known from the work of Deatrick et al. (1991).

The third region, at 2,011,597, is more complex. There is an 18.5 Kb region (of which 7.1 Kb are n's) in the Joint Sequence absent from the EDGP sequence; this sequence is not in the shotgun sequence of either relevant EDGP clone, cosmid 82C7, or BACH48C10. In addition, there is a 10.3-Kb sequence at the junction of these clones in the EDGP sequence that is absent from the Joint Sequence. Finally, 11 Kb of cosmid 82C7 is in the opposite orientation when compared to BACH48C10; note that the cosmid and BAC DNAs are from different strains (see Methods).

These three major sequence differences could be caused by polymorphisms; all occur within regions of EDGP cosmid sequence. However we consider that the hypothesis of misassembly, at least for the *Actn* and *ph-d/ph-p* region differences, is the more likely. The current "finishing" of the Joint Sequence by the BDGP should settle these problems.

Repeated regions are well known to present a problem to the software used to build long contiguous regions of sequence, and there is evidence of this in at least two regions of the Joint Sequence. It is interesting that in both cases the assembler appears to have had difficulties with tandem near repeats of quite long regions. Using statistical criteria, the software that assembled the Joint Sequence was able to identify and filter out the highly repetitive sequences, based on their higher than expected representation (Myers et al. 2000). However, the low copy repetitive sequences (such as the tandemly duplicated regions in these two cases) are difficult to identify by these methods. If this comparison of the X tip is typical of the genome as a whole, then it indicates some 90 misassemblies in the euchromatic sequence of the Joint Sequence.

The differences revealed by this comparison of the genomic sequence from the two projects includes both differences in sequencing method (clone-based in the case of the EDGP, and shotgun in the case of the Joint Sequence) and differences in strain from which the DNA was derived. Even when the sequenced DNA is from the same strain, but isolated some years apart, there are differences in sequence and transposable elements. For example, Myers et al. (2000) compared the *Adh* region sequenced by the BDGP using predominantly P1 clones (Ashburner et al. 1999) with that from the Joint Sequence. Although the differences are smaller than in the comparison made in this study, they are qualitatively very similar.

There are clear differences in gene predictions between the EDGP and Joint Sequence projects, both in the existence of genes and in the precise models of genes predicted in common. Again this is not too surprising, given that the Joint Sequence was annotated very largely by automatic methods, whereas the EDGP had the luxury of time to make a more careful study of each gene model. These differences point out that we have a long way to go before the annotation of eukaryotic sequences can be left entirely in the hands of computer programs (Ashburner 2000; Lewis et al. 2000). This analysis has, for obvious reasons, concentrated on the differences between the two available sequences of this chromosome region. This must not obscure the fact that in general the two analyses are in remarkable agreement, and point to the overall utility of the "complete" genomic sequence now available for *D. melanogaster*.

METHODS

Clone Libraries and Map Construction

DNA from two strains has been sequenced. About 44% of the sequence is from BAC clones derived from the same strain as that sequenced by the BDGP and by Celera; in contrast, the cosmid clones sequenced were from a different strain (Fig. 1). The relationship between these strains cannot be determined. Both strains were free of *P-elements*.

The cosmid library used for the construction of the *X* chromosome physical map was derived from a wild-type (Canton-S) strain and described in detail by Sidén-Kiamos et al. (1990). It has an estimated average insert size of 35 Kb and contains ~18,000 clones providing a fourfold coverage of the genome. The library is available on high density double spotted filters from the MRC HGMP Resource Centre (http:// www.hgmp.mrc.ac.uk/Biology/Bio.html).

Three BAC clone libraries were used; each was constructed from DNA from the y^2 ; *cn bw sp* isogenic strain. Two BAC libraries were made at CEPH (Centre d'Etude du Polymorphisme Humaine). One (BACN clones) was prepared with *Nde*II inserts and the other (BACH clones) with *Hin*dIII inserts, both in the vector pBeloBACII. These two libraries were made with pools of size-fractioned DNA that gave mean insert sizes of up to 90 Kb. The 23,400 clones gave ~10-fold coverage of the genome. The third library was of *Eco*RI digested DNA (BACR clones) and was constructed in the vector pBACe.3.6 by Aaron Mammoser and Kazutoyo Oseogawa at the Roswell Park Cancer Institute (Buffalo, NY) in collaboration with the BDGP (Hoskins et al. 2000). This library gave an ~17-fold coverage of the genome with an average insert size of 165 Kb.

Sequencing

Cosmids and BACs were sequenced by a two-stage approach involving random sequencing of sub-clones followed by directed sequencing to resolve problems. DNA from cosmids and BACs was sonicated and fragments of 1.4–2 Kb were cloned into either M13 or pUC18 vectors. Clones were sequenced using dye-terminator chemistry and loaded on ABI373 or ABI377 automated sequencing machines. Sequence base calling and contig assembly was accomplished using Phred/Phrap software (Ewing and Green 1998; Ewing et al. 1998) and editing took place in either Consed (Gordon et al. 1998) or Gap4 (Bonfield et al. 1995). Gaps were filled using a combination of custom primer walking and PCR.

Cosmid and BAC DNAs were nebulized and end repaired. Following agarose gel purification, fragments of ~1500 nucleotides were ligated to linearized vector (pTZ19R or pCR-BluntII) and cloned in the KK2186 strain of *Escherichia coli*. Bacterial clones were picked at random and cultured overnight. Plasmid DNAs were prepared by an alkaline lysis method and purified using the QIAprep 96 Turbo Miniprep kit (QIAGEN). Insert DNA were sequenced from both ends using universal primers. Cycle sequencing was performed with labeled terminators using AmpliTaq and the Big Dye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems).

The Heidelberg group employed the RANDI strategy that combines the advantages of RANdom and DIrected approaches. It involves systematic simultaneous sequencing on both strands from clones of combined libraries without cloning gaps. The random library fragments were generated by separate partial digestion with two four-cutter restriction enzymes (Tsp, Sau3A), gel-purified and ligated into plasmid vector. In parallel, BAC or cosmid DNA was completely digested with EcoRI (or HindIII) and fragments were isolated from agarose gel and inserted into the pUC vector. Their sequences served as a "scaffold" in the assembly of the complete sequence of the BAC genomic insert and also as templates for primer walking in the finishing stage. Cycle sequencing of plasmid DNA was performed with the AmpliTaqFS core kit (Applied Biosystems), using forward and reverse primers labeled with FITC or CY5. An MJ Research PT-200 cycler was used for 25 cycles (97°C, 15 sec; 55°C, 30 sec; 68°C, 30 sec). Reactions were loaded off-gel on the 72-clone porousmembrane combs, applied to 60-cm long polyacrylamide gels (4.5% Hydrolink Long Ranger gel solution, FMC) and analyzed on the ARAKIS sequencing system with array detectors, developed at EMBL (Erfle et al. 1997). This system allows simultaneous on-line sequencing of both strands (doublex sequencing), with the two sequencing products obtained in a single sequencing reaction, each labeled with a different fluorescent dye (Wiemann et al. 1995). Up to 2000 bases are thus obtained simultaneously in one sequencing reaction, which represents an efficient system for identifying large numbers of long sequences in one run. Raw sequencing data were evaluated, analyzed, and the consensus sequence assembled, using the software packages (LaneTracker and GeneSkipper) developed at EMBL. Remaining sequencing gaps were covered by primer walking (Voss et al. 1993). Direct cosmid or BAC DNA sequencing was carried out essentially as described elsewhere (Benes et al. 1997).

P-element Stocks and Mapping

A large-scale screen for insertions of the enhancer trap vector $P\{lacW\}$ (Bier et al. 1989) in essential *X* chromosome genes has been performed in H. Jäckle's laboratory (Peter et al., in prep.). Females homozygous for a male sterile insertion of the $P\{lacW\}$ element in chromosome 2 were crossed en masse to w/Y; wg Sp/CyO; $P\{ry^+=delta2-3\}(99B)$ males. In the next generation five homozygous *FM6* females were mated to two w/Y; $P\{lacW\}/CyO$; $P\{ry^+=delta2-3\}(99B)/+$ males. F2 daughters in which the *CyO* and $P\{lacW\}$ chromosomes had cosegregated were individually mated to *Fm7c/Y* males. Lines that produced only *FM6* sons in the F3 generation were kept as candidates for a lethal insertion. If these re-tested, then the lethal insertion was kept in stock balanced with *FM7c*.

P{*lacW*} insertion sites were mapped by either plasmid rescue or inverse PCR. DNA from adult flies was isolated using a QIAGEN column, digested overnight with an appropriate restriction enzyme, and then ligated under conditions favoring intramolecular joining. For plasmid rescue, *E. coli* cells were electroporated with the DNA and plated for the selection of ampicillin resistant colonies. These were used to inoculate small scale overnight cultures from which plasmid DNA was then isolated. Cycle sequencing was performed with a primer complementary to the 31-bp inverted repeat of the *P-element* on an ABI373 DNA sequencer using dye terminator technology. In the case of inverse PCR, we followed essentially the

protocol from the BDGP. We used their primers Plac1 and Plac4 for the amplification of 5' sequences and primers Pry4 and Plw3–1 for the amplification of 3' sequences, respectively. Sequencing was done as before with primer SP1 for 5' and primer SP6 for 3' analysis.

Sequence Analysis

Sequences were analyzed by the EDGP on a clone-by-clone basis; i.e., only fully sequenced clones (cosmids or BACs) were included. The overall analysis scheme is similar to that adopted by other genome projects (e.g., *C. elegans* Sequencing Consortium 1998).

tRNA genes were identified by tRNAscan-SE program, v. 1.0 (Lowe and Eddy 1997). Candidate protein coding genes were predicted independently by GENEFINDER version 0.84 (P. Green, unpubl.) and the publicly available Genscan version 1.0 (Burge and Karlin 1997). These two programs employ fundamentally different algorithms and complemented each other on gene discovery. GENSCAN and GENEFINDER had been trained on a vertebrate gene set and a Drosophila-specific set (compiled by G. Helt, pers. comm.), respectively. We measured the accuracy of prediction of the two programs with already known Drosophila genes and we found them to be comparable. However, each of them performed better on a different set of genes. As expected, Drosophila-trained GENEFINDER showed a preference for genes with fewer exons and smaller introns when compared to the vertebrate-trained GENSCAN.

Additional supporting evidence for the predicted genes, as well as indications of their function, was obtained by similarity searches against SWISS-PROT and TrEMBL protein databases (Bairoch and Apweiler 2000), Drosophila nucleic acid sequences (derived from EMBL-Bank), and Drosophila EST sets, generated by the BDGP (Rubin et al. 2000b) and by Andrews et al. (2000). (Note that the annotation of version 1 of the Joint Sequence did not use the entire BDGP EST data set; in particular 4,654 3' ESTs, out of a total of 86,121, were not used [S. Lewis, pers. comm.]). EST alignments were also used to fine-tune the intron/exon boundaries of the predicted genes. Simple repetitive sequences were filtered out by TANDEM, IN-VERTED, and QUICKTANDEM programs (R. Durbin, pers. comm..) whereas repeats of higher complexity were screened out using similarity searches against Drosophila repetitive and transposable element databases (see below). For protein and nucleotide database searches we used BLASTX and BLASTN, v. 1.4.9. (Altschul et al. 1990), respectively.

Finally, protein domains/motifs of the predicted genes were identified by PPSEARCH and HMMER (v. 2.1.1) programs, scanning the PROSITE and PFAM databases, respectively. PROSITE output was further filtered using the EMOTIF program (Nevill-Manning et al. 1998).

All data generated by the automatic computational analysis described above were parsed into an ACeDB-based database (http://www.acedb.org/), XDrosDB, tailored to the needs of the EDGP. The combined data were manually examined/analyzed using ACeDB software. During this analysis we disregarded genes with a GENEFINDER score <50, if there was no other supporting evidence for them (i.e., protein similarity and/or EST matches). This cutoff is stricter than the one used by the BDGP (cutoff = 20) for the analysis of the *Adh* region (Ashburner et al. 1999); and, presumably, increases the number of rejected genes (false negatives). However, we chose to set it this high to avoid overpredicting genes (false positives). During the initial phase of our work, we, in collaboration

with the BDGP, created and subsequently curated three datasets. One consisted of 1332 D. melanogaster coding sequences from genes that have been previously studied genetically and/or biochemically. This is a nonredundant set, i.e., only one copy of each gene is included in it. In case a gene appears in multiple entries in the public databases (e.g., alternatively transcribed, submitted from more than one laboratory, etc.), we manually selected one copy (usually the best documented or longest open reading frame). We used this dataset to test the accuracy of the two chosen gene prediction programs (GENEFINDER, GENSCAN), as well as a source for hexanucleotides score calculation (GENEFINDER). This dataset has been subsequently expanded/updated to include genes identified by Drosophila genome projects (EDGP, BDGP, and Celera), with the help of Leyla Bayraktaroglou (FlyBase at Harvard). Both the original and expanded versions, together with information about their history, can be found at: ftp:// ftp.ebi.ac.uk/pub/databases/edgp/sequence_sets/or from

http://fruitfly.berkeley.edu/. Similarly, a nonredundant collection of 47 *D. melanogaster* transposable elements and another consisting of 96 miscellaneous repetitive sequences were also assembled during the initial phase of our project. These datasets were used to identify complex repetitive regions, as described previously. They are also available from the same ftp site or from the BDGP site.

For clarity, we use the term "Joint Sequence" to refer to v1.0 of the complete sequence of the genome of D. melanogaster (Adams et al. 2000) released on March 24, 2000 by Celera. Comparisons of predicted, or known, protein sequences from the EDGP project with those from the Joint Sequence were done by CLUSTALW using the protein sequences of release 1.0 of the Joint Sequence (http://www.fruitfly.org/ sequence/sequence_db/aa_gadfly.dros of March 21, 2000). These comparisons were then analyzed by hand. The comparison of the entire sequence of the *X* chromosome tip with the sequence of the same region from the Joint Sequence was done using the MUMmer program (Delcher et al. 1999), which aligns long genomic regions by finding corresponding maximal unique matches. Nine separate alignments were done using the following GenBank accession nos.: AE003417, AE003418, AE003419, AE003420, AE003421, AE003422, AE003423, AE003424, and AE003425, each being matched against the entire EDGP sequence. The resulting alignments were analyzed by hand to find regions where the discrepancies between the sequences were large. Figure 3 was drawn by hand and is a graphic depiction of the alignment produced by MUMmer. Large segments absent from one of the sequences have been highlighted.

The results presented in this study were obtained by or before February 7, 2000. However, if we had repeated the same analysis today we would have assigned function (by protein similarity) to 23 more of the predicted genes (raising the percentage of the genes with significant protein similarities to 66% of the 206 newly identified genes).

Supplementary data are available from ftp://ebi.ac.uk/pub/ databases/edgp/EDGP-GenomeResearch_suppdata_2001.

ACKNOWLEDGMENTS

This work was supported by a Contract from the European Commission under Framework Programme 4 (coordinator D.M. Glover), by a grant from the Medical Research Council, London to M.A. and D.M.G., by a grant from the Dirección General de Investigacion Científica y Técnica to J.M., by a grant from the Hellenic Secretariat General for Science and Technology to K.L., and by a grant from the Deutsche Humangenomprojekt to H.J. R.D.C.S. was supported by a Wellcome Trust Senior Fellowship. We thank many colleagues for their help. We are grateful to Gerry Rubin and his colleagues at the BDGP, particularly Suzanna Lewis, Sima Misra, and Susan Celniker (and, of course, Gerry himself) for the exchange of materials, information, and ideas over the years. Greg Helt of the BDGP was very helpful in providing us with the initial Drosophila gene training set. We also thank Rolf Apweiler and his SWISS-PROT/TrEMBL team at the EBI, particularly Alexander Kanapin and Wolfgang Fleischmann for their help with the protein motif analysis. We also thank Rolf Apweiler, head of that team, for his blessings. Richard Durbin's group at the Sanger Center have been extraordinarily helpful; in particular, Daniel Lawson gave tremendous help with ACeDB despite having to bend double at times. Kim Rutherford of the Pathogen Sequencing Unit at the Sanger Center provided the software to draw Figure 1; without this we may have been lost. We thank Brian Oliver of the NIH, Bethesda for a pre-print copy of his paper on testis ESTs, Leyla Bayraktaroglou (FlyBase group, Harvard) for her help in the curation of reference sequence data sets, and David Judge of the Cambridge School of Biological Sciences Biocomputing Unit for help.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

REFERENCES

- Adams, M., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. 2000. The genome sequence of *Drosophila melanogaster. Science* **287**: 2185–2195.
- Agol, I.J. 1929. Treppenartiger Allelomorphismus bei Drosophila melanogaster. Zur Frage nach der Struktur und der Natur des Gens. Zh. Eksp. Biol. Med. 5: 86–101.
- Ajioka, J.W., Smoller, D.A., Jones, R.W., Carulli, J.P., Vellek, A.E.C., Garza, D., Link, A.J., Duncan, I.W., and Hartl, D.L. 1991. *Drosophila* genome project — one-hit coverage in yeast artificial chromosomes. *Chromosoma* **100**: 495–509.
- Alikhanian, S.I. 1937. A study of the lethal mutations in the left end of the sex-chromosome in *Drosophila melanogaster*. *Zool. Zh.* 16: 247–279 (Russian, English summary).
- Alonso, M.C. and Cabrera, C.V. 1988. The *achaete-scute* gene complex of *Drosophila melanogaster* comprises four homologous genes. *EMBO J.* 7: 2585–2591.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
- Andrews, J., Bouffard, G., Cheadle, C., Lu, J., Becker, K., and Oliver, B. 2000. Gene discovery using computational and microarray analysis of transcription in the *Drosophila melanogaster* testis. *Genome Res.* 10: 2030–2043.
- Ashburner, M. 1969. Patterns of puffing activity in the salivary gland chromosomes of *Drosophila*. II. The X-chromosome puffing patterns of *Drosophila melanogaster* and *Drosophila simulans*. *Chromosoma* 27: 47–63.
 - —. 2000. A biologist's view of the Drosophila Genome Annotation Assessment Project. Genome Res. 10: 391–393.
- Ashburner, M., Misra, S., Roote, J., Lewis, S.E., Blazej, R., Davis, T., Doyle, C., Galle, R., George, R., Harris, N, et al. 1999. An exploration of the sequence of a 2.9-Mb region of the genome of *Drosophila melanogaster*. The *Adh* region. *Genetics* **153**: 179–219.
- Bairoch, A., and Apweiler, R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. *Nucleic*

Acid Res. 28: 45-48.

- Bayer, C.A., Holley, B., and Fristrom, J.W. 1996. A switch in Broad-Complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of *Drosophila* imaginal discs. *Dev. Biol.* **177:** 1–14.
- Bayer, C.A., von Kalm, L., and Fristrom, J.W. 1997. Relationships between protein isoforms and genetic functions demonstrate functional redundancy at the Broad-Complex during *Drosophila* metamorphosis. *Dev. Biol.* 187: 267–282.
- Becker, H.J. 1962. Die Puffs der Speicheldrusenchromosomen von Drosophila melanogaster. II. Die Auslosung der Puffbildung, ihre Spezifitat und ihre Beziehung zur funktion der Ringdruse. Chromosoma 13: 341–384.
- Benes, V., Kilger, C., Voss, H., Pääbo, S., and Ansorge, W. 1997. Direct primer walking on P1 plasmid DNA. *Biotechniques* 23: 98–100.
- Benos, P.V., Gatt, M.K., Ashburner, M., Murphy, L., Harris, D., Barrell, B., Ferraz, C., Vidal, S., Brun, C., Demailles, J., et al. 2000. From sequence to chromosome: The tip of the *X* chromosome of *D. melanogaster. Science* **287**: 2220–2222.
- Berge, J.B., Feyereisen, R., and Amichot, M. 1998. Cytochrome P450 monooxygenases and insecticide resistance in insects. *Phil. Trans. R. Soc.* 353: 1701–1705.
- Bier, E., Vaessin, H., Shepherd, S., Lee, K., McCall, K., Barbel, S., Ackerman, L., Carretto, R., Uemura, T., Grell, E., et al. 1989. Searching for pattern and mutation in the *Drosophila* genome with a P-lacZ vector. *Genes & Dev.* 3: 1273–1287.
- Biessmann, H. and Mason, J.M. 1997. Telomere maintenance without telomerase. *Chromosoma* 106: 63–69.
- Bonfield, J.K, Smith, K.F., and Staden, R. 1995. A new DNA sequence assembly program. Nucl. Acids Res. 23: 4992–4999.
- Bridges, C.B. 1916. Non-disjunction as proof of the chromosome theory of heredity. *Genetics* 1: 1–52; 107–163.
- 1935. Salivary chromosome maps with a key to the banding of the chromosomes of *Drosophila melanogaster*. J. Hered. 26: 60–64.
- ——. 1937. Correspondences between linkage maps and salivary chromosome structure, as illustrated in the tip of chromosome 2R of Drosophila melanogaster. Cytologia Fujii Jubil. Vol.: 745–755.
- Burge, C. and Karlin, S. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 168: 78–94.
- C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282: 2012–2018.
- Campuzano, S. and Modolell, J. 1992. Patterning of the Drosophila nervous system: The acheate-scute complex. Trends Genet. 8: 202–207.
- Campuzano, S., Carramolino, L., Cabrera, C.V., Ruiz-Gómez, M., Villares, R., Boronat, A., and Modolell, J. 1985. Molecular genetics of the *achaete-scute* gene complex of *D. melanogaster. Cell* 40: 327–338.
- Chávez, V.M., Marqués, G., Delbecque, J.P., Kobayashi, K., Hollingsworth, M., Burr, J., Natzle, J.E., and O'Connor, M.B. 2000. The *Drosophila disembodied* gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. *Development* 127: 4115–4126.
- Chia, W., Howes, G., Martin, M., Meng, Y.B., Moses, K., and Tsubota, S. 1986. Molecular analysis of the yellow locus of *Drosophila. EMBO J.* 5: 3597–3605.
- Dambly-Chaudière, C. and Ghysen, A. 1987. Independent subpatterns of sense organs require independent genes of the *achaete-scute* complex in *Drosophila* larvae. *Genes & Dev.* 1: 297–306.
- Deak P., Omar, M., Saunders, R.D.C., Pal, M., Komonyi, O., Szidonya, J., Maroy, P., Guo, Y., Zhang, X., Kaiser, K., et al. 1997. P-element insertion alleles of essential genes on the third chromosome of *Drosophila melanogaster*. Correlation of physical and genetic maps in chromosomal region 86E-87F. *Genetics* 147: 1697–1722.

728 Genome Research

Deatrick, J., Daly, M., Randsholt, N.B., and Brock, H.W. 1991. The complex genetic locus *polyhomeotic* in *Drosophila melanogaster* potentially encodes two homologous zinc-finger proteins. *Gene* **105**: 185–195.

Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., and Salzberg, S.L. 1999. Alignment of whole genomes. *Nucleic Acids Res.* 27: 2369–2376.

DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W., and Guild, G.M. 1991. The *Drosophila* Broad-Complex encodes a family of related proteins containing zinc fingers. *Genetics* **129**: 385–397.

Erfle, H., Ventzki, R., Voss, H., Rechmann, S., Benes, V., Stegemann, J., and Ansorge, W. 1997. Simultaneous loading of 200 sample lanes for DNA sequencing on vertical and horizontal, standard and ultrathin gels. *Nucleic Acids Res.* 25: 2229–2230.

Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. *Genome Res.* 8: 186–194.

Ewing, B., Hillier, L., Wendl, M.C., and Green, P. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Res.* 8: 175–185.

García-Bellido, A. 1979. Genetic analysis of the *achaete-scute* system of *Drosophila melanogaster*. *Genetics* **91**: 491–520.

García-García, M.J., Ramain, P., Simpson, P., and Modolell, J. 1999. Different contributions of pannier and wingless to the patterning of the dorsal mesothorax of *Drosophila*. *Development* **126**: 3523–3532.

González, F. 1989. Estructura Molecular de los Genes del Complejo achaete-scute de *Drosophila melanogaster*. Ph.D thesis. Universidad Autónoma, Madrid.

Gordon, D., Abajian, C., and Green, P. 1998. Consed: A graphical tool for sequence finishing. *Genome Res.* 8: 195–202.

Hoskins, R.A., Nelson, C.R., Berman, B.P., Laverty, T.R., George, R.A., Ciesiolka, L., Naeemuddin, M., Arenson, A.D., Durbin, J., David, R.G., et al. 2000. A BAC-based physical map of the major autosomes of *Drosophila melanogaster*. *Science* 287: 2271–2274.

Hummel, T., Krukkert, K., Roos, J., Davis, G., and Klambt, C. 2000. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26: 357–370.

Jiménez, F. and Campos-Ortega, J.A. 1987. Genes of the subdivision 1B of the genome of *Drosophila melanogaster* and their participation in neural development. J. Neurogenet. 4: 179–200.

Judd, B.H. 1998. Genes and chromomeres: A puzzle in three dimensions. *Genetics* 150: 1–9.

Judd, B.H., Shen, M.W., and Kaufman, T.C. 1972. The anatomy and function of a segment of the *X* chromosome of *Drosophila melanogaster*. *Genetics* **71**: 139–156.

Kafatos, F.C., Louis, C., Savakis, C., Glover, D.M., Ashburner, M., Link, A.J., Sidén-Kiamos, I., and Saunders, R.D.C. 1990. Integrated maps of the *Drosophila melanogaster* genome. *Trends Genet.* 7: 155–160.

Kimmerly, W., Stultz, K., Lewis, S., Lewis, K., Lustre, V., Romero, R., Benke, J., Sun, D., Shirley, G., Martin, C., et al. 1996. A P1-based physical map of the *Drosophila* euchromatic genome. *Genome Res.* 6: 414–430.

Lea, D.E. 1955. *Actions of radiations on living cells*, 2nd edition. Cambridge University Press, Cambridge, UK.

Lefevre, G. 1976. A photographic representation and interpretation of the polytene chromosomes of *Drosophila melanogaster* salivary glands. In *The genetics and biology of drosophila, Vol. 1a* (ed. M. Ashburner and E. Novitski), pp. 31–66. Academic Press, London, UK.

Lefevre, G., and Watkins, W.S. 1986. The question of the total gene number in *Drosophila melanogaster*. *Genetics* **113**: 869–895.

Lewis, S., Ashburner, M., and Reese, M.G. 2000. Annotating eukaryotic genomes. *Curr. Opin. Struct. Biol.* **10**: 349–354.

Lim, J.K. and Snyder, L.A. 1974. Cytogenetic and complementation analysis of recessive lethal mutations induced in the *X*-chromosome of *Drosophila* by three alkylating agents. *Genet. Res.* 24: 1–10.

Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequences. Nucleic Acids Res. 25: 955–964.

Louis, C., Madueño, E., Modolell, J., Omar, M., Papagiannaki, G., Saunders, R.D.C., Savakis, C., Sidén-Kiamos, I., Spanos, L., Topalis, P., et al. 1997. 105 new potential *Drosophila melanogaster* genes revealed through STS families. *Gene* **195**: 187–193.

Madueño, E., Rimmington, G., Saunders, R.D.C., Savakis, C., Sidén-Kiamos, I., Skavdis, G., Spanos, L., Trennear, J., Adam, P., Ashburner, M., et al. 1995. A physical map of the X chromosome of *Drosophila melanogaster*: Cosmid contigs and sequence tagged sites. *Genetics* 139: 1631–1647.

Morgan, T.H. 1910. Sex limited inheritance in *Drosophila*. *Science* **32**: 120–122.

Muller, H.J. 1935. The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere. *Genetica* 17: 237–252.

Myers, E.W., Sutton, G.G., Delcher A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., et al. 2000. A whole-genome assembly of *Drosophila. Science* 287: 2196–2204.

Nelson, D. 2000. http://drnelson.utmem.edu/CytochromeP450.html.

Nevill-Manning, C.G., Wu, T.D., and Brutlag, D.L. 1998. Highly specific protein sequence motifs for genome analysis. *Proc. Natl. Acad. Sci.* 95: 5865–5871.

Nguyen, D.N., Liu, Y., Litske, M.L., and Reinke, R. 1997. The *sidekick* gene, a member of the immunoglobulin superfamily, is required for pattern formation in the *Drosophila* eye. *Development* **124**: 3303–3312.

Rørth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G., Weigmann, K., Milan, M., Benes, V., Ansorge, W., et al. 1998. Systematic gain-of-function genetics in *Drosophila*. *Development* 125: 1049–1057.

Rubin, G.M. 1996. Around the genomes: The *Drosophila* genome project. *Genome Res.* 6: 71–79.

—. 1998. The Drosophila genome project: A progress report. Trends Genet. 14: 340–343.

Rubin, G.M., Yandell, M.D., Wortman, J.R., Miklos, G.L.G., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W., et al. 2000a. Comparative genomics of the eukaryotes. *Science* 287: 2204–2215.

Rubin, G.M., Hong, L., Brokstein, P., Evans-Holm, M., Frise, E., Stapleton, M., and Harvey, D.A. 2000b. A *Drosophila* complementary DNA resource. *Science* **287**: 2222–2224.

Ruiz-Gómez, M. and Modolell, J. 1987. Deletion analysis of the achaete-scute locus of D. melanogaster. Genes & Dev. 1: 1238–1246.

Saunders, R.D.C., Glover, D.M., Ashburner, M., Sidén-Kiamos, I., Louis, C., Monastirioti, M., Savakis, C., and Kafatos, F.C. 1989. PCR amplification of DNA microdissected from a single polytene chromosome band: A comparison with conventional microcloning. *Nucleic Acids Res.* **17**: 9027–9037.

Sidén-Kiamos, I., Saunders, R.D.C., Spanos, L., Majerus, T., Treanear, J., Savakis, C., Louis, C., Glover, D.M., Ashburner, M., and Kafatos, F.C. 1990. Towards a physical map of the *Drosophila melanogaster* genome: Mapping of cosmid clones within defined genomic divisions. *Nucleic Acids Res.* 18: 6261–6270.

Sorsa, V. 1988. Chromosome maps of Drosophila. 2 vols. CRC Press, Boca Raton, FL.

Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N., Misra, S., and Rubin, G.M. 1999. The BDGP gene disruption project: Single P element insertions mutating 25% of vital *Drosophila* genes. *Genetics* 153: 135–177.

Sturtevant, A.H. 1913. The linear arrangement of six sex-linked factors in *Drosophila*, as shown by their mode of association. *J. Exp. Zool.* **14:** 43–59.

Sulston, J., Mallett, F., Staden, R., Durbin, R., Horsnell, T., and Coulson, A. 1988. Software for genome mapping by fingerprinting techniques. *Comput. Appl. Biosci.* 4: 125–132.

Török, T., Tick, G., Alvarado, M., and Kiss, I. 1993. P-lacW insertional mutagenesis on the second chromosome of *Drosophila melanogaster*: Isolation of lethals with different overgrowth phenotypes. *Genetics* **135**: 71–80.

- Tzolovsky, G., Deng, W.M., Schlitt, T., and Bownes, M. 1999. The function of the Broad-Complex during *Drosophila melanogaster* oogenesis. *Genetics* 153: 1371–1383.
- Venter, J.C., Adams, M.D., Sutton, G.G., Kervalage, A.R., Smith, H.O., and Hunkapiller, M. 1998. Shotgun sequencing of the human genome. *Science* 280: 1540–1542.
- Villares, R. and Cabrera, C.V. 1987. The *achaete-scute* gene complex of *D. melanogaster*: Conserved domains in a subset of genes required for neurogenesis and their homology to myc. *Cell* **50**: 415–424.
- Voss, H., Wiemann, S., Grothues, D., Sensen, C., Zimmermann, J., Schwager, C., Stegemann, J., Erfle, H., Rupp, T., and Ansorge, W. 1993. Automated low-redundancy large-scale DNA sequencing by primer walking. *Biotechniques* 15: 714–721.
- Wiemann, S., Stegemann, J., Grothues, D., Bosch, A., Estivill, X.,

Schwager, C., Zimmermann, J., Voss, H., and Ansorge, W. 1995. Simultaneous on-line DNA sequencing on both strands with two fluorescent dyes. *Anal. Biochem.* **224**: 117–121.

- Young, M.W. and Judd, B.H. 1978. Nonessential sequences, genes, and the polytene chromosome bands of *Drosophila melanogaster*. *Genetics* **88**: 723–742.
- Zhimulev, I.F. 1999. Genetic organization of polytene chromosomes. Adv. Genet. **39:** 1–599.
- Zhimulev, I.F., Belyaeva, E.S., Mazina, O.M., and Balasov, M.L. 1995. Structure and expression of the BRC locus in *Drosophila melanogaster*, Diptera: Drosophilidae. *Eur. J. Ent.* 92: 263–270.

Received December 10, 2000; accepted in revised form February 16, 2001.