Stoichiometric Model of Escherichia coli Metabolism: Incorporation of **Growth-Rate Dependent Biomass Composition and Mechanistic Energy Requirements**

J. Pramanik, J. D. Keasling

Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462; telephone: 510-642-4862; e-mail: keasling@socrates.berkeley.edu

Received 26 November 1996; accepted 2 April 1997

Abstract: A stoichiometric model of metabolism was developed to describe the balance of metabolic reactions during steady-state growth of Escherichia coli on glucose (or metabolic intermediates) and mineral salts. The model incorporates 153 reversible and 147 irreversible reactions and 289 metabolites from several metabolic data bases for the biosynthesis of the macromolecular precursors, coenzymes, and prosthetic groups necessary for synthesis of all cellular macromolecules. Correlations describing how the cellular composition changes with growth rate were developed from experimental data and were used to calculate the drain of precursors to macromolecules, coenzymes, and prosthetic groups from the metabolic network for the synthesis of those macromolecules at a specific growth rate. Energy requirements for macromolecular polymerization and proofreading, transport of metabolites, and maintenance of transmembrane gradients were included in the model rather than a lumped maintenance energy term. The underdetermined set of equations was solved using the Simplex algorithm, employing realistic objective functions and constraints; the drain of precursors, coenzymes, and prosthetic groups and the energy requirements for the synthesis of macromolecules served as the primary set of constraints. The model accurately predicted experimentally determined metabolic fluxes for aerobic growth on acetate or acetate plus glucose. In addition, the model predicted the genetic and metabolic regulation that must occur for growth under different conditions, such as the opening of the glyoxylate shunt during growth on acetate and the branching of the tricarboxylic acid cycle under anaerobic growth. Sensitivity analyses were performed to determine the flexibility of pathways and the effects of different rates and growth conditions on the distribution of fluxes. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 398-421, 1997.

Keywords: Escherichia coli; metabolism; flux; linear optimization

INTRODUCTION

A central problem in metabolic engineering is understanding how the cell balances its energy and biosynthetic needs

Correspondence to: Jay Keasling Contract grant sponsor: NSF Contract grant number: BES-9502495 growth kinetics of the cell are incorporated into the model through the energy and biomass requirements, which are functions of the growth rate. The stoichiometry of metabolism is well defined and variations among different cells are limited to a few reactions. There are two different methods of using stoichiometry to study bioreaction networks. The first method reduces the stoichiometric matrix to an over-

ous conditions. Simple carbon sources and mineral salts are taken into the cell and transformed into the complex biopolymers and cofactors that compose the cell, while generating the metabolic energy necessary to make these complex biomolecules. There have been many attempts to study regulation of metabolism using mathematical models. The simplest description of cellular metabolism uses order of magnitude calculations to determine the metabolic yields from cell composition, measured substrate uptake and product syn-

(catabolism and anabolism) for optimal growth under vari-

thesis, and growth rates (Blanch and Clark, 1996; Savinell et al., 1989). However, this analysis provides limited formation about the fluxes of intermediary metabolism. A more detailed analysis uses the stoichiometry of biochemical pathways and cell composition data to estimate the steady-state mass and energy distributions (Nissen et al., 1997; Savinell and Palsson, 1992a; Tsai et al., 1988; Vallino and Stephanopoulos, 1993; Varma et al., 1993); experimentally determined intermediary fluxes can be used as constraints to improve the accuracy of calculations. The most detailed level of metabolic pathway analysis examines the dynamic behavior of cell metabolism and requires kinetic and thermodynamic data, most of which is currently un-

available: kinetic parameter measurements are difficult to

obtain and kinetic models developed from in vitro measure-

ments may not apply in vivo.

Metabolic modeling, based on the stoichiometry of the reactions, does not require kinetic parameters and information about the kinetic mechanism of each enzyme. The determined form and then uses linear regression to find the flux distribution (Tsai et al., 1988; Vallino and Stephanopoulos, 1993). Independent measurements must be added

or a number of reactions must be removed or constrained to render the matrix nonsingular. Unfortunately, the pathways neglected for mathematical reasons may, in fact, be active. Removing entire pathways may cause large changes in the calculated fluxes. Several previous models solved an overdetermined system by constraining the stoichiometric matrix through inspection (Papoutsakis, 1984, Tsai et al., 1988).

The second method optimizes an underdetermined matrix using different objective functions and allows retention of the entire network. Applications of this approach to a subset of hybridoma, yeast, and Escherichia coli metabolism demonstrated the utility of this technique (Majewski and Domach, 1990; Savinell et al., 1989; Savinell and Palsson, 1992a,b; van Gulik and Heijnen, 1995; Varma and Palsson, 1993, 1994a,b; 1995; Varma et al., 1993). Majewski and Domach were able to predict the secretion of acetate during growth of E. coli on glucose (Majewski and Domach, 1990). Varma and Palsson showed the effect of oxygen availability on acetate secretion and the metabolic capabilities of E. coli to overproduce amino acids and other products (Varma and Palsson, 1993; 1994a,b; 1995; Varma et al., 1993). However, in all of these cases, the metabolic pathways were not complete, numerous reactions were lumped, and there was no accounting for the effects of growth rate on cellular composition and energy requirements.

We developed a detailed stoichiometric model of E. coli metabolism that includes a more complete data base of known reactions involved in the catabolism of glucose, acetate, or tricarboxylic acid (TCA) cycle intermediates. None of the pathways are lumped to reduce the matrix so that any future simulations studying deletions or mutations in pathways would not require generation of an entirely new stoichiometric matrix. A detailed stoichiometric matrix allows us to study deletions or mutations of individual enzymes by setting constraints of the flux values for those enzymes. The model uses the precursor requirements (calculated from the known composition of the bacterial cell) (Neidhardt et al., 1990) and solves for the fluxes through the internal metabolic pathways using linear optimization. Rather than include a "maintenance energy" term, energy demands for growth are calculated from mechanistic energy requirements for macromolecular polymerization and proofreading, transport of metabolites, and maintenance of transmembrane gradients. Experimental data on nutrient uptake and secretion can be incorporated into the model. The model is solved using linear optimization and predicts the metabolic regulation observed during growth under different conditions and on different carbon sources.

MODEL DEFINITION

The basis for this flux-based model of metabolism is a mass balance on the metabolites in *E. coli*,

$$\frac{d\mathbf{x}}{dt} = \mathbf{S} \cdot \mathbf{v} - \mathbf{b} \tag{1}$$

where \mathbf{x} is the vector of metabolite concentrations $(n \times 1)$ dimension), \mathbf{S} is the stoichiometric matrix $(n \times m)$ dimension), \mathbf{v} is a vector of reaction rates or fluxes through the metabolic reactions $(m \times 1)$ dimension), and \mathbf{b} is the vector for consumption and secretion rates of metabolites and for biosynthetic requirements for cellular macromolecules $(n \times 1)$ dimension). Under balanced growth conditions, the concentrations of intracellular metabolites are constant with time:

$$\mathbf{S} \cdot \mathbf{v} = \mathbf{b}. \tag{2}$$

The goal of this model is to determine how mass and energy is allocated within the network of metabolic reactions (\mathbf{v}). We begin with descriptions of the composition of the cell (which determines \mathbf{b}) and of the reactions involved in synthesizing the precursors and energy required for growth (which determine \mathbf{S}).

Biomass and Energy Requirements

An average E. coli B/r cell growing exponentially at 37°C under aerobic conditions in glucose minimal medium with a doubling time of approximately 40 min has a dry weight of 2.8×10^{-13} g. The dry weight is 55% protein, 20.5% RNA, 3.1% DNA, 9.1% lipids, 3.4% lipopolysaccharides, 2.5% peptidoglycan, 2.5% glycogen, 0.4% polyamines, and 3.5% other metabolites, cofactors, and ions (Neidhardt, 1987). The types and amounts of precursors required to synthesize these macromolecules at a given growth rate were determined from the composition of each of the macromolecules: the amino acid composition of proteins and the nucleotide composition of RNA and DNA are listed in Table I, the phospholipid composition in Table II, and the fatty acid composition in Table III. The amounts of cofactors and energy carriers present per gram dry weight (DW) of biomass are listed in Table IV. The b vector contains these precursor requirements to account for synthesis of the cellular macromolecules.

In addition to the precursors required to synthesize macromolecules, energy and reducing equivalents are also required for growth. Table V presents the energy requirements for 1 g of E. coli B/r cells growing aerobically with a 40-min doubling time at 37°C in glucose minimal medium. The energy requirements for DNA production include that needed by helicase to unwind the helix, the synthesis of the primer RNA to Okazaki fragments and ligation of the fragments, proofreading by DNA polymerase III, adjustment of the torsional tension of each chromosomal domain, and methylation of newly synthesized DNA (Neidhardt et al., 1990). The energy requirements for stable RNA production include that for discarding segments of primary transcripts and that for modifications (Neidhardt et al., 1990). The energy requirements for protein synthesis include that for mRNA synthesis, charging tRNAs with amino acids and incorporation of amino acids into protein, and proofreading, assembly, and modification of the protein (Neidhardt et al.,

Table I. Precursor requirements for synthesis of 40-min cell.

	•	
Component	Percent	μmol/g DW
Amino acids		
Ala	9.60	488
Arg	5.53	281
Asn	4.51	229
Asp	4.51	229
Cys	1.71	87
Glu	4.92	250
Gln	4.92	250
Gly	4.92	582
His	1.77	90
Ile	5.43	276
Leu	8.42	428
Lys	6.42	326
Met	2.87	146
Phe	3.46	176
Pro	4.13	210
Ser	4.03	205
Thr	4.74	241
Trp	1.06	54
Tyr	2.58	131
Val	7.91	402
rNTPs		
ATP	26.2	165
GTP	32.2	203
CTP	20.0	126
UTP	21.6	136
dNTPS		
dATP	24.7	24.7
dGTP	25.4	25.4
dCTP	25.4	25.4
TTP	24.7	24.7

Amino acids, ribonucleotide triphosphates (rNTPs), and deoxyribonucleotide triphosphates (dNTPs) are given in percentage of the biopolymer and as micromoles per gram dry weight (μ mol/g DW) of cells (Neidhardt, 1987).

1990). These energy requirements were also included in the **b** vector.

Growth-Rate Dependence of Cell Composition

The macromolecular composition and energy requirements listed above are not the same for cells growing at different

rates. For example, RNA content increases with growth rate whereas DNA and protein contents decrease with the growth rate (Bremer and Dennis, 1996; Brunschede et al., 1977). To solve for the fluxes through the metabolic reactions for doubling times other than 40 min, correlations were developed from experimental data for RNA, DNA, protein, surface area (for membrane components), and glycogen content as a function of specific growth rate (µ) for exponentially growing cells or dilution rate for continuous cultures (Fig. 1, Table VI). As the macromolecular composition of the cell changes with growth rate, so must the energy requirements to synthesize these macromolecules, which were correlated with the macromolecular needs (Fig. 2). Because protein is one of the most energetically expensive macromolecules and because the relative amount of protein decreases with increasing growth rate, the total energy expended by the cell (per g DW) actually decreases with growth rate.

Metabolic Pathways

The transformation of a simple carbon source and mineral salts to the biomass and energy requirements for growth is facilitated through the metabolic reactions. The stoichiometric matrix S contains the stoichiometry of all reactions incorporated into the model. Included in this model were 153 reversible and 147 irreversible reactions (Appendix A) and 289 metabolites (Appendix B) compiled primarily from three sources: the Boehringer-Mannheim wall chart (Michal, 1993), chapters 14–19, 24–41, 44, 48, 49, 67, 69, 72, 75, and 87 of Neidhardt et al. (1996), and the Ecocyc data base (Karp et al., 1996). There are discrepancies between the number of reactions included in this model and the Ecocyc data base because a number of reactions in the Ecocyc data base have the same product but alternative substrates (e.g., NH₄⁺ versus glutamine as a source for nitrogen) when only one of these is known to be used under physiological conditions in E. coli. Finally, a number of transport reactions were included in the model to account for uptake or secretion of inorganics or metabolites. In many cases, these transport steps deplete or enhance the transmembrane proton gradient.

Table II. Phospholipid composition of E. coli strains.

Specific growth rate	1.3		1.04			0.92			
(h^{-1})	PE%	PG%	CL%	PE%	PG%	CL%	PE%	PG%	CL%
Strains									
E. coli B/r				75.0	18.0	5.0			
E. coli B/r	77.0	21.3	1.1				78.0	20.4	1.5
E. coli B/r	74.8	20.6	2.3				75.1	20.3	1.9
E. coli AX14	71.3	19.2	3.4				69.5	19.4	4.6
E. coli K-12	67.1	18.7	5.1				68.8	19.3	5.7
Overall average	73.0	19.7	3.4				72.8	19.8	3.4
Overall SD	3.9	1.0	1.8				4.4	0.6	2.0

Data for a specific growth rate of $1.04\ h^{-1}$ are from Neidhardt (1987). All other data are from Ballesta and Schaechter (1971). PE, phosphatidylethanolamine; PG, phosphatidylglycerol; CL, cardiolipin.

Table III. Fatty acid composition of *E. coli* lipids.

Fatty acid	Total fatty acid (%)
Myristic acid, 14:00	2.68
Myristoleic acid, 14:01	7.70
Palmitic acid, 16:00	38.23
Palmitoleic acid, 16:01	10.74
Heptadecenoic acid, 17Δ	16.11
cis-Vaccenic acid, 18:00	0.90
Oleic acid, 18:01	17.91
Nonadecenoic acid, 19Δ	5.73

Data from Bright-Gaertner and Proulx (1972), Kanemasa et al. (1967), Mavis and Vagelos (1972), and Neidhardt (1987).

Although the stoichiometry of most biosynthetic reactions is well known, the required cofactor(s) for a particular reaction may not be so well known. When known, correct NADH or NADPH was used in the stoichiometry of a reaction. When it was known that NADP/NADPH and NAD/NADH could be used interchangeably for the same reaction, pathways for both reactions were included; however, if no information was available to determine which electron carrier is used, it was assumed that NAD/NADH was used for anabolism and NADP/NADPH was used for catabolism.

In contrast to most of the biosynthetic reactions that have well-known stoichiometry, the pathways involved in electron transport and oxidative phosphorylation have variable stoichiometry due to the use of different dehydrogenases and cytochromes: the NADH dehydrogenases NDH-I and NDH-II transport 2 H⁺/e⁻ and 0 H⁺/e⁻, respectively (Gennis and Stewart, 1996); the cytochromes cyt bd and cyt bo3 transport 1 H⁺/e⁻ and 2 H⁺/e⁻, respectively (Gennis and Stewart, 1996); the number of H⁺ transported into the cell by the membrane bound H⁺-ATPase to phosphorylate ADP has been estimated as 2-4, with 3 being the most likely (Harold and Maloney, 1996). Pathways for all possible stoichiometries were incorporated into the model. Thus, the P/O ratio can be a noninteger value (Neidhardt et al., 1990), because it is a function of multiple enzymes being used in parallel for respiration. The model simulates the noninteger P/O ratios by incorporating all known respiration pathways

Table IV. Amounts of cofactors, energy carriers, and other molecules in *E. coli*.

Metabolite	μmol/g DW
5-Methyl-THF	50.0
Putrescine	35.0
Spermidine	7.0
NAD	2.15
NADH	0.05
NADP	0.13
NADPH	0.4
UDP-Glucose (soluble pool)	3.0
ATP (soluble pool)	4.0
ADP (soluble pool)	2.0
AMP (soluble pool)	1.0

Data from Lowry et al. (1971) and Penfound and Foster (1996).

Table V. Energy requirements for polymerization and processing of macromolecules.

Process	Energy required	Reference
Protein synthesis and processing ^a		
Activation and incorporation	4.0	Neidhardt et al., 1990
mRNA synthesis	0.2	Neidhardt et al., 1990
Proofreading	0.1	Neidhardt et al., 1990
Assembly and modification	0.006	Neidhardt et al., 1990
RNA synthesis and processing ^b		
Discarding segments	0.38	Neidhardt et al., 1990
Modification	0.02	Neidhardt et al., 1990
DNA synthesis and processing ^b		
Unwinding helix	1.0	Neidhardt et al., 1990
Proofreading	0.36	Neidhardt et al., 1990
Discontinuous synthesis	0.006	Neidhardt et al., 1990
Negative supercoiling	0.005	Neidhardt et al., 1990
Methylation	0.001	Neidhardt et al., 1990
Membrane processes ^c		
Proton leakage	62.9	Maloney, 1987

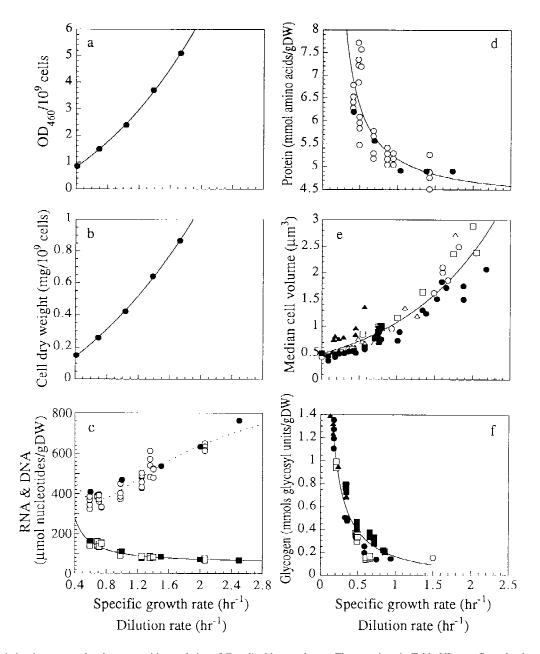
Data from Neidhardt et al. (1990).

into the stoichiometric matrix and allowing fluxes through multiple pathways simultaneously.

Solution Method

For the system described above, the number of reactions (m) is greater than the number of metabolites (n). Because multiple solutions exist, linear optimization was used to determine the fluxes (v). Linear optimization requires objective functions for solution:

minimize/maximize:
$$Z = \sum_{i} c_{i} v_{i}$$
 (3)


where c_i are the weights and v_i are the elements of the flux vector. Some of the objective functions that were used included minimization or maximization of ATP usage, substrate uptake, growth rate, and product synthesis. Typically, maximization of growth rate and minimization or maximization of metabolite secretion were used as objective functions.

For the objective of maximizing growth rate, the flux of precursors for a biomass composition corresponding to a particular growth rate was calculated using the relationships in Table VI. The amount of each precursor per unit time necessary for synthesis of biomass at a particular growth rate was used as the upper bound for the flux of each precursor, and the lower bound was set to zero. Then the model was forced to maximize the synthesis rate of each precursor for biomass composition, such as individual amino acids, nucleotides, and glycogen monomer units. If the model was unable to match the necessary flux of one or more of the precursors for a biomass composition consistent with a particular growth rate, the biomass composition was recalculated at another growth rate based on the precursor metabo-

^aμmol ATP/μmol amino acid.

^bμmol ATP/μmol nucleotide.

cμmol H+/g DW h.

Figure 1. Variation in macromolecular composition and size of *E. coli* with growth rate. The equations in Table VI were fit to the data (lines in each plot). (a) Optical density per 10⁹ cells as a function of specific growth rate (Bremer and Dennis, 1987). (b) Dry cell weight per 10⁹ cells as a function of specific growth rate (Bremer and Dennis, 1987). (c) RNA and DNA (μmol per g DW) as a function of specific growth rate. Circles: RNA. Squares: DNA. Open symbols are from Brunschede et al. (1977). Closed symbols are from Bremer and Dennis (1987). (d) Protein (mmol per g DW) as a function of specific growth rate. Open symbols are from Brunschede et al. (1977). Closed symbols are from Bremer and Dennis (1987). (e) Median cell volume (μm³) as a function of specific growth rate (Bremer and Dennis, 1987; Eckert and Schaechter, 1965; Shehata and Marr, 1971). (f) Glycosyl units (mmol per g DW) as a function of dilution rate. Circles are from Neidhardt (1987). All other data are from Holme (1957).

lite that was not synthesized at the rate calculated from the correlations. The model was resolved with the new biomass composition. If the synthesis fluxes were consistent with biomass composition at that growth rate, then the case was considered biologically feasible. Otherwise, the iterative procedure was repeated until the appropriate biomass requirements could be balanced for a particular carbon and energy source and growth rate.

In addition to the objective function, optimization requires constraints. Equation (2) served as one set of constraints. This constraint states that the mass balance must be

satisfied and no accumulation of metabolites is allowed. Another set of constraints included the minimum (α_i) and/or maximum (β_i) of allowable fluxes:

$$\alpha_i < v_i < \beta_i \quad i = 1, 2, 3, \dots, m.$$
 (4)

Because fluxes were defined as positive values only, the individual fluxes had a lower limit of zero and an upper limit of infinity. Reversible reactions were divided into two positive reactions in opposite directions. Experimental data for individual fluxes can be used as either lower and/or

Table VI. Equations for growth-rate dependent biomass composition.

Component	Correlation	Reference
Optical density (OD ₄₆₀ /10 ⁹ cells)	$-2.688 + 2.748 \cdot 2^{0.869 \; \mu}$	Calculated from data in Figure 1(a)
Cell mass (10^{-12} g DW)	$-0.636 + 0.635 \cdot 2^{0.718 \mu}$	Calculated from data in Figure 1(b)
RNA ^{a,b} (μmol NTPs/g DW)	$1139.5 - \frac{966.5}{\mu} \cdot 2^{-0.665/\mu}$	Calculated from data in Figure 1(c)
DNA ^b (μmol dNTPs/g DW)	$\frac{100 \cdot \mu}{0.023} \left(2^{(0.017 + 0.663)/\mu} - 2^{0.663/\mu} \right)$	Calculated from data in Figure 1(c)
Protein ^b (mmol AAs/g DW)	$4.228 \cdot 2^{0.288/\mu}$	Calculated from data in Figure 1(d)
Cell volume (µm³)	$0.486 \cdot 2^{1.144\mu}$	Calculated from data in Figure 1(e)
Cell radius (R) (µm)	$0.293 \cdot 2^{0.41\mu}$	
Cell length (L) (μ m)	$2\cdot 2^{0.333\mu}$	Donachie and Robinson, 1987
Surface area ^c (µm ²)	$2\pi R (L-2R) + 4\pi R^2$	
Glycogen (glycosyl units)	$10^3(1-2^{-3.24\cdot 10^4/\mu})$	Calculated from data in Figure 1f

^aIt has been speculated that the increase in the RNA content with growth rate is due to the larger fraction of stable RNA (rRNA, tRNA) necessary for the increase in protein production rate.

cThe radius and length are then used to calculate the surface area (*A*) of the cell, assuming that the cell is a cylinder with hemispherical caps. The lipid composition was calculated from the surface area. For a cell with a 40-min doubling time, phosphatidylethanolamine makes up 75% of these lipids, phosphatidylglycerol 18%, and cardiolipin 5% with only trace amounts of phosphatidylserine (Table II) (Ballesta and Schaechter, 1971; Neidhardt, 1987). The lipopolysaccharide content of the 40-min cell is 8.4 μmol/g DW and the peptidoglycan content is 8.4 μmol/g DW (Neidhardt, 1987). The fatty acid composition found in total lipids is presented in Bright–Gaertner and Proulx (1972), Kanemasa et al. (1967), Mavis and Vagelos (1972), and Neidhardt (1987). Because the lipid and fatty acid composition was available for only a cell with 40-min doubling time, it was assumed that the composition did not change with growth rate (data from Table III averaged).

upper constraints, or the flux value can be set to the value of the experimental data. Because a range of values is allowed for the individual flux constraints, variability in experimental data can be incorporated into the model. In this model the internal fluxes were not constrained because the goal was to predict the fluxes and compare them with experimental data.

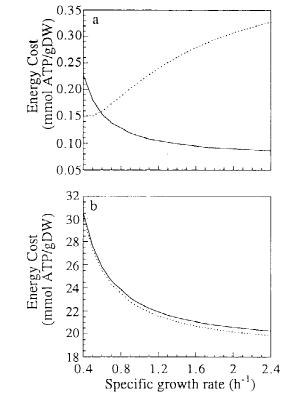
The model was solved using the Simplex subroutines in the OSL package (IBM, 1992). This package has a number of important features: it has several alternative solution methods, it has been optimized for very large problems, and it enables the performance of a extensive sensitivity analysis

Sensitivity Analysis

The basis matrix for each case (B) is a nonsingular subset of the stoichiometric matrix corresponding to the elements of v (v_B) , which uniquely solve the equation.

$$\mathbf{B} \cdot \mathbf{v_R} = \mathbf{b.} \tag{5}$$

Two types of sensitivity analysis can be performed on the solution. The first type determines what changes are required in the row and column bounds to cause the optimum


solution to occur with a different basis. That is, it examines how constrained a given reaction is in order to achieve a given objective using the same basis matrix. If a reaction is bounded tightly with respect to the basis matrix, it means that the basis matrix is very dependent on the flux value through that reaction and so is the simulation solution. The second type of analysis determines how large a change is required in the objective function coefficients to cause the optimum solution to occur with a different basis. This type of analysis gives rise to "reduced costs" (Luenberger, 1984).

RESULTS

Model Predictions Compared to Experimental Data

To determine the validity of the model, model predictions were compared to experimental data for two different growth conditions: aerobic growth on acetate plus glucose with a doubling time of 70 min and aerobic growth on acetate with a doubling time of 145 min (Walsh and Koshland, 1985b). The experimental flux measurements from Walsh and Koshland (1985b) were originally in units of

^bAlthough the amino acid and nucleotide compositions of protein and DNA and RNA, respectively, may vary under different growth conditions, the amino acid and nucleotide fractions were available for only a cell with a 40-min doubling time (Fig. 1); it was assumed that this composition was maintained at all growth rates.

Figure 2. Growth rate dependence of energy requirements. (a) RNA and DNA polymerization energy requirements (Neidhardt et al., 1990). (---) RNA, (—) DNA. (b) Total energy and protein polymerization requirements (Neidhardt et al., 1990). (---) Protein polymerization requirements. (—) Total energy requirements.

millimoles of substrate consumed per minute per liter of cytoplasmic volume. The experimental data was converted to units of millimoles of substrate consumed per hour per gram DW, assuming that cytoplasmic volume of a cell is 75% of the total volume, and the correlations for cell mass and cell volume (Table VI) were used to convert from a volume basis flux to a gram DW basis flux. The lower bound for the carbon dioxide secretion rate was set at the experimentally determined value, and the values predicted for oxygen uptake rates were in the range of experimental values (Andersen and von Meyenburg, 1980; Harrison and Loveless, 1971; Hempfling and Mainzer, 1975; Marr, 1991; Schulze and Lipe, 1964). The constraints and objective function for each case are presented in Table VII.

For aerobic growth on acetate plus glucose, the model predictions were very similar to experimental data for fluxes through the reactions of glycolysis and the TCA cycle (Fig. 3). The experimental glucose uptake rate for this case (7 mmol glucose/g DW h) for a doubling time of 70 min was taken from Herbert and Kornberg (1976), Schulze and Lipe (1964), and Tempest and Neijssel (1987). The average difference between the experimental values and the simulation results was 16%. In addition, the model was able to predict several levels of genetic regulation; for example, the glyoxylate shunt was not functional for growth on glucose and the flux through PEP carboxykinase was toward oxaloacetate (Walsh and Koshland, 1985b).

For aerobic growth on acetate only, the model predictions were also very similar to experimentally determined fluxes (Fig. 4). The average difference between the experimental values and the simulation results for this case was 17%. The model was able to predict that the glyoxylate shunt must be active during growth on acetate to generate sufficient precursors for macromolecule synthesis. The model was also able to predict the correct directions for reactions catalyzed by PEP carboxykinase and malic enzyme (Fraenkel, 1996).

The elemental compositions for bacteria were determined experimentally to be $CN_{0.2}O_{0.27}$, $CN_{0.25}O_{0.5}$, and CN_{0.24}O_{0.49} (Blanch and Clark, 1996; Characklis and Marshall, 1989) and our biomass composition data predicted elemental balances of $CN_{0.31}O_{0.2}$ for aerobic growth on acetate plus glucose and CN_{0.3}O_{0.58} for aerobic growth on acetate. Because the model only accounts for a proton balance across the cell membrane and there is no accounting of protons in the cell moving between metabolites, it is not possible to calculate an intracellular proton composition necessary for the protons in the elemental composition. The model predictions of $Y_{x/s}$ (g g⁻¹) = 0.53 (neglecting the acetate consumed) or $Y_{x/s}$ (g g⁻¹) = 0.52 (including acetate and assuming that the acetate has half of the carbon value of glucose) compares favorably with the experimentally determined yield coefficient of $Y_{x/s}$ (g g⁻¹) = 0.53 (Characklis and Marshall, 1989). If the acetate and glucose consumed are normalized per carbon, the model predicts $Y_{x/s}$ [g(g carbon)⁻¹] = 0.086 compared to experimental data of $Y_{x/s}$ [g(g $(carbon)^{-1}$] = 0.088 (Characklis and Marshall, 1989). The oxygen uptake rate for a 70-min doubling time was reported as 11-33 mmol of O_2/g DW h and the model predicted a flux of 12.6 mmol of O₂/g DW h. For a 145-min doubling time the oxygen uptake was reported as 8-29 mmol of O₂/g DW h (Andersen and von Meyenburg, 1980; Harrison and Loveless, 1971; Hempfling and Mainzer, 1975; Marr, 1991; Schulze and Lipe, 1964) and the model predicted a flux of 16 mmol of O₂/g DW h. It was observed experimentally that the oxygen consumption rate decreases by 22% for growth on acetate plus glucose relative to growth on only acetate, even though the growth rate increases (Walsh and Koshland, 1985a), and the model predicted a 21% decrease in oxygen consumption.

Anaerobic growth on glucose with a 70-min doubling time was simulated to determine if the TCA cycle would branch as observed experimentally (Fig. 5) (Cronan and LaPorte, 1996; Nimmo, 1987). The glucose uptake rate was set to 3 times the aerobic rate (Smith and Neidhardt, 1983), and secretion rates for organic acids were set to experimentally determined values (Tempest and Neijssel, 1987). The model predicted the experimental observation that the TCA cycle is not a cycle but rather branches into a reductive pathway that produces succinyl-CoA and an oxidative pathway that produces α -ketoglutarate (Cronan and LaPorte, 1996). The model was also able to predict that α -ketoglutarate dehydrogenase is not expressed and that the glyoxylate shunt is closed during anaerobic growth. Unfortunately, there were no available experimental data to validate the flux values.

Table VII. Simulation parameters: Constraints on fluxes and criteria for maximization and minimization.

	Lower bound	Upper bound	Objective	
Growth condition	(mmol/g	g DW h)	function criterion	Note
Aerobic, glucose + acetate				
Glucose uptake	0	7	Maximize	Measureda
Acetate uptake	0	11.94	Maximize	Measured ^b
Carbon dioxide secretion	14	∞	Minimize	
Acetate secretion	0	11.14	Maximize	Measured ^b
Precursor production rate	μ dep	endent	Maximize	Calculated ^c
Aerobic, acetate				
Acetate uptake	0	33.42	Maximize	Uptake ^d
Carbon dioxide secretion	45	∞	Minimize	Measured ^b
Precursor production rate	μ dep	endent	Maximize	Calculated ^c
Anaerobic, glucose				
Glucose uptake	0	21	Maximize	Measurede
Oxygen uptake	0	0		
Carbon dioxide secretion	18.48	∞	Minimize	Measuredf
Acetate secretion	0	7.67	Maximize	Measurede
Lactate secretion	0	16.69	Maximize	Measurede
Formate secretion	0	0.50	Maximize	Measurede
Succinate secretion	0	2.25	Maximize	Measurede
Ethanol secretion	0	10.46	Maximize	Measurede
Precursor production rate	μ dep	endent	Maximize	Calculated ^c

^aThe values present in the literature are in the same range as the value used as a lower bound for the simulation (Herbert and Kornberg, 1976; Schulze and Lipe, 1964; Tempest and Neijssel, 1987).

Sensitivity to Biomass Composition

To determine the sensitivity of the solutions to the biomass composition, the three cases described above were simulated for incorrect biomass compositions: the cell composition corresponding to a 145-min doubling time (rather than the experimentally determined 70-min doubling time) was used to solve for the fluxes for aerobic growth on glucose and acetate and for anaerobic growth on glucose, and the cell composition corresponding to a 70-min doubling time (rather than the experimentally determined 145min doubling time) was used to solve for the fluxes for aerobic growth on acetate. The constraints and objective functions remained unchanged. For growth on glucose plus acetate, the correct biomass composition gave rise to an average error of 16% between the experimental data and model predictions for fluxes through the TCA cycle and glycolytic pathway, whereas the incorrect biomass composition increased the average error to 80%. Similarly, for growth on only acetate the correct biomass composition gave rise to an average error of 17%, whereas the incorrect biomass composition increased the average error to 32%.

The results for the two aerobic cases were significantly affected by changing the biomass compositions (Table

VIII). The flux distribution predicted by the model for aerobic growth on acetate with the incorrect biomass composition resulted in no flux through PEP carboxykinase, contrary to experimental observations (Walsh and Koshland, 1985b). For anaerobic growth on glucose, the incorrect biomass composition gave rise to incorrect branching of the TCA cycle with fumarase and malate dehydrogenase catalyzing reactions in directions that were not observed experimentally (Cronan and LaPorte, 1996). Further, the simulation suggested that there would be flux through the glyoxylate shunt, which was not observed experimentally (Nimmo, 1987). The sensitivity analysis of the anaerobic case was not performed because there were no available experimental data for comparisons.

Sensitivity Analysis on Flux Constraints

Sensitivity analysis was performed on the three cases to determine which reactions were the most constrained; that is, which reactions had the least amount of flexibility in flux values for which the solution will not change. The flexibility in the flux for a reaction is the range of flux values (represented as a percentage) that can occur without changing the basis matrix (Figs. 3–5).

^bData from Walsh and Koshland (1985b).

^cCalculated from correlations in Table VI and information presented in Tables I–V.

^dThe acetate uptake rate from Walsh and Koshland (1985b) was 41.4 mmol/g DW h but the model predicted an acetate uptake rate of 33.42 mmol/g DW h. Any amount of acetate provided in surplus resulted in acetate secretion.

^eData from Smith and Neidhardt (1983).

^fData from Bock and Sawers, (1996).

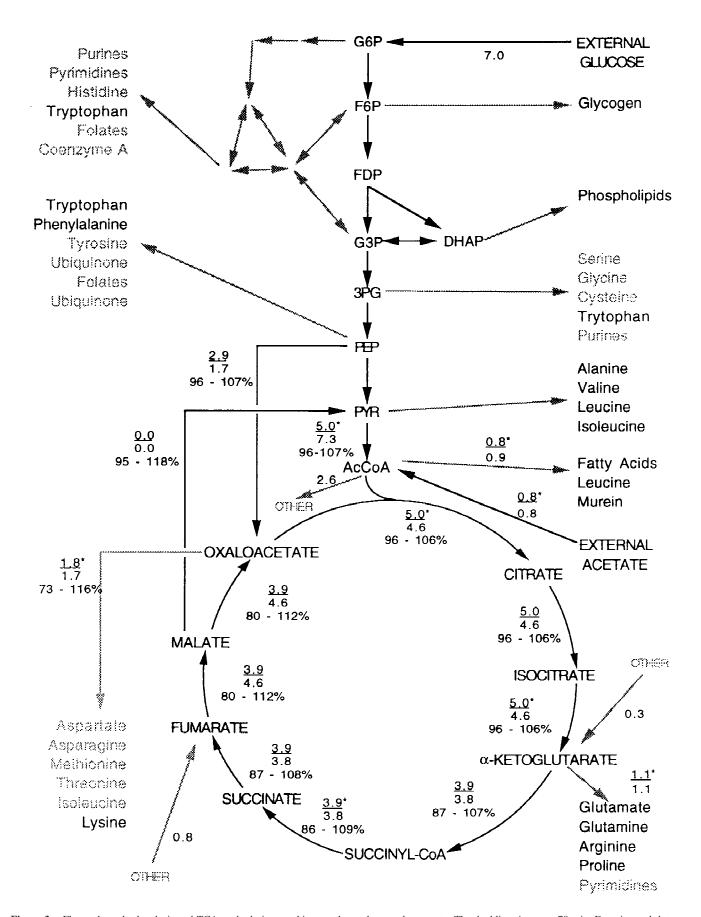
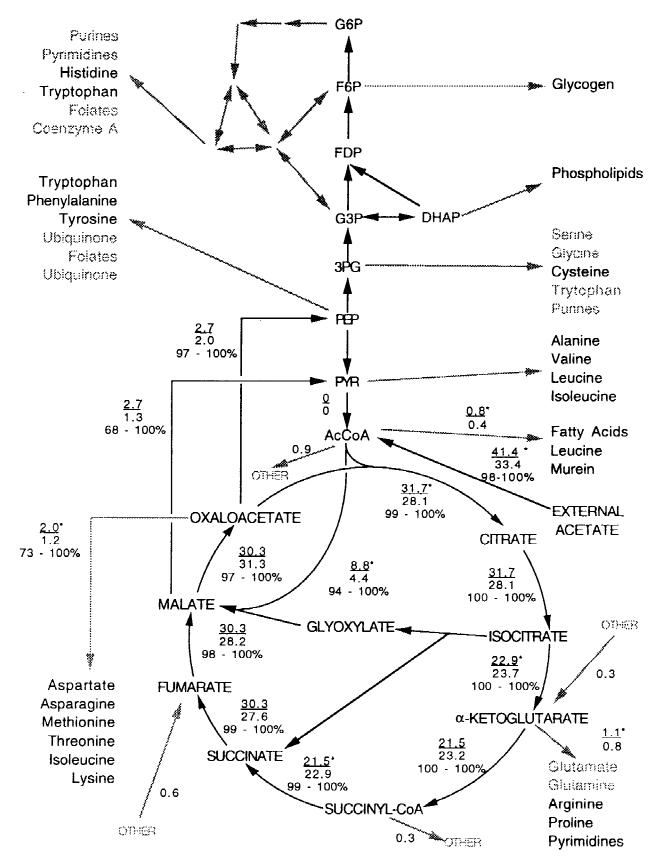



Figure 3. Fluxes through glycolysis and TCA cycle during aerobic growth on glucose plus acetate. The doubling time was 70 min. Experimental data are underlined (Walsh and Koshland, 1985b), the simulation results are the center values, and the flexibility of the reactions (as a percent of the simulation results) are on the bottom. Solid lines and words indicate highly constrained reactions and precursors. Stippled lines and words indicate less constrained reactions and precursors. The flux values measured experimentally are marked with an asterisk, and the flux values calculated from the experimental data using a simpler model are unmarked (Walsh and Koshland, 1985b). The "other" on the figure means synthesis of the metabolite due to the presence of other enzymes not depicted in the figure.

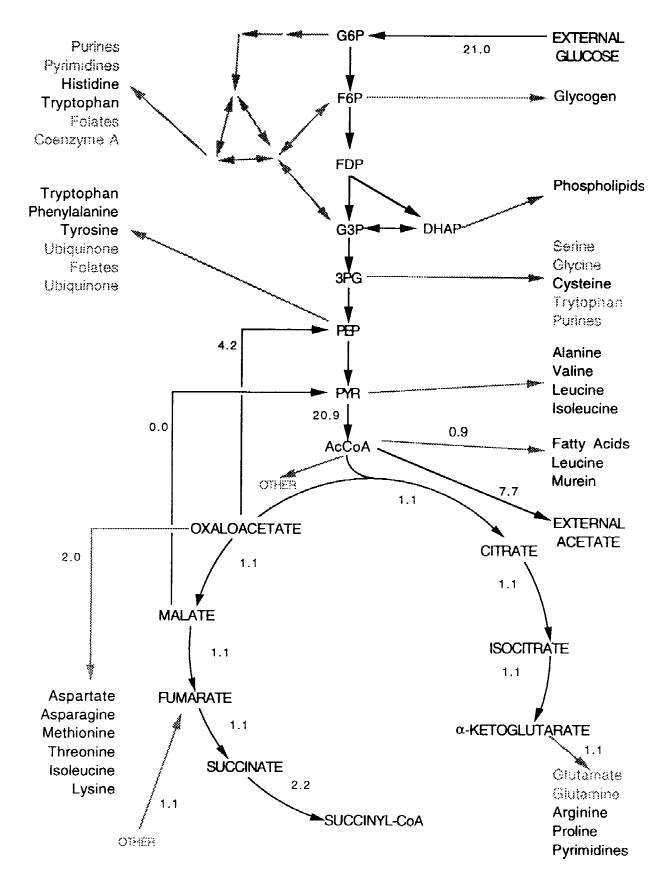
Figure 4. Fluxes through glycolysis and TCA cycle during aerobic growth on acetate. The doubling time was 145 min. Experimental data are underlined (Walsh and Koshland, 1985b), the simulation results are the center values, and the flexibility of the reactions (as a percent of the simulation results) are on the bottom. Solid lines and words indicate highly constrained reactions and precursors. Stippled lines and words indicate less constrained reactions and precursors. The flux values experimentally measured are marked with an asterisk, and the flux values calculated from the experimental data using a simpler model are unmarked (Walsh and Koshland, 1985b). The "other" on the figure means synthesis of the metabolite due to the presence of other enzymes not depicted in the figure.

Table VIII. Effect of biomass composition on the simulation results. The simulation results for fluxes through key reactions of TCA cycle and glycolysis for two different biomass compositions are compared to experimental data. The error is relative to experimental data (Walsh and Koshland, 1985b). Only the flux values presented in Table 8 were used to determine average error percentages.

	Aero	bic, glucose -	+ acetate	Aerobic acetate			
	Predictions		Experiment ^a	Pred	Experiment ^a		
	$\tau_D = 70$	$\tau_D = 145$	$\tau_D = 70$	$\tau_D = 70$	$\tau_D = 145$	$\tau_D = 145$	
PEP carboxykinase	0	0	0	0 (100%)	2.0 (28%)	2.71	
PEP carboxylase	1.7 (41%)	0.8 (71%)	2.9	0	0	0	
Pyruvate dehydrogenase	7.3 (45%)	7.5 (50%)	5.0	0	0	0	
Citrate synthase	4.6 (8%)	1.0 (79%)	5.0	25.1 (21%)	28.1 (11%)	31.7	
Aconitase	4.6 (8%)	1.0 (79%)	5.0	25.1 (21%)	28.1 (11%)	31.7	
Isocitrate dehydrogenase	4.6 (8%)	0.6 (87%)	5.0	18.5	23.7	22.9	
2-Ketoglutarate dehydrogenase	3.8 (3%)	0 (100%)	3.87	17.7 (18%)	23.2 (8%)	21.5	
Succinate thiokinase	3.8 (3%)	0 (100%)	3.9	17.2 (20%)	22.9 (7%)	21.5	
Succinate dehydrogenase	3.8 (3%)	0.4 (90%)	3.9	24.3 (20%)	27.6 (9%)	30.3	
Fumarase	4.6 (20%)	1.1 (72%)	39	25.2 (17%)	28.2	30.3	
Malate dehydrogenase	4.6 (20%)	1.1 (72%)	3.87	26.9 (11%)	31.3 (3%)	30.3	
Malic enzyme	0	0	0	4.9 (80%)	1.3 (52%)	2.7	
Isocitrate lyase	0	0.4	0	6.6 (25%)	4.4 (50%)	8.8	
Overall error ^b	16%	80%		32%	17%		

^aData from Walsh and Koshland (1985b).

In general, the sensitivity analysis indicated that glycolysis was the most constrained pathway during aerobic and anaerobic growth on glucose, whereas the TCA cycle was the most constrained pathway during growth on acetate (Table IX). The rigid constraints on glycolysis during growth on glucose are due, in part, to the sensitivity of the leucine and valine biosynthetic pathways, which diverge from pyruvate. For growth on acetate, the rigid constraints on the TCA cycle are partly due to the rigidity in isocitrate dehydrogenase and in the cysteine and methionine synthesis rates. In the anaerobic case, the TCA cycle reactions had a lower bound of 59% of the flux value and no upper bound except for reactions catalyzed by fumarase and malate dehydrogenase, which had bounds of 92–142%; these are the two enzymes responsible for the TCA cycle branching under anaerobic growth conditions by changing direction of the reactions.


DISCUSSION

A steady-state, flux-based model was developed to study the distribution of mass and energy fluxes through the *E. coli*

metabolic reaction network. The contributions of this model are threefold: a relatively complete data base of reactions from glucose to precursors, coenzymes, and prosthetic groups was used; correlations for experimentally observed changes in biomass composition with growth rate were included; and energy requirements for growth were based on mechanistic requirements rather than on a lumped maintenance energy requirement.

The model incorporated 153 reversible and 147 irreversible reactions using 289 metabolites. The relatively complete nature of the reactions will allow one to examine the effect of mutations in specific genes on fluxes through pathways by constraining fluxes through relevant enzymes. It will also allow more flexibility in choosing which metabolites or pathways might be most amenable to alterations to engineer metabolism. In genetically manipulating cells for the production of a desired compound or protein, the growth rate of the cell may change significantly. Therefore, incorporation of growth-rate dependent biomass composition as well as energy requirements in such a model would allow one to accurately simulate the effect of the growth rate changes on the distribution of resources throughout the cell.

^bThe error is calculated as (|experiment - prediction|)/experiment.

Figure 5. Fluxes through glycolysis and TCA cycle during anaerobic growth on glucose. The doubling time was 70 min. Solid lines and words indicate highly constrained reactions and precursors. Stippled lines and words indicate less constrained reactions and precursors. The ''other'' on the figure means synthesis of the metabolite due to the presence of other enzymes not depicted in the figure.

Experimental data were used to develop correlations for biomass composition at different growth rates. The biomass sensitivity analysis indicates the importance of incorporating changes in biomass composition with growth rate. For growth on acetate plus glucose, the biomass composition greatly affected the fluxes. Using the correct composition, the predicted fluxes differed from experimental measurements by 16%. Using an incorrect composition, the predicted fluxes differed from experimental measurements by 80%. For growth on acetate the predicted fluxes using a correct composition differed from experimental measurements by 17%, and for the incorrect composition the predicted fluxes differed from experimental measurements by 32%.

Maintenance energy terms have often been incorporated into models to balance energy requirements that could not be accounted for through biomass synthesis requirements (Pirt, 1965, 1982). However, the use of the maintenance energy term does not account mechanistically for this energy drain. To improve the predictive power of stoichiometric models, we accounted for the energy drain using a mechanistic approach and correlated this with growth rate. Besides incorporating the obvious energy requirements, such as those for polymerization of biopolymers, we also incorporated energy requirements, such as those for proofreading of DNA and protein, RNA processing, and proton leakage across membranes. Because the composition of the cell changes with growth rate, the energy requirements were scaled with cell composition. In a similar manner, proton leakage was scaled with the cell's surface area, which increases with growth rate.

There was close agreement between the predicted and experimentally determined flux values, and the solutions agreed with observed regulation under the different growth conditions. The model was able to predict the opening and closing of the glyoxylate shunt in the presence and absence of acetate as the sole carbon source. The O₂ uptake rate under aerobic growth conditions predicted by the model agreed with experimental data (Andersen and von Meyenburg, 1980; Harrison and Loveless, 1971; Hempfling and

Mainzer, 1975; Marr, 1991; Schulze and Lipe, 1964). The model also predicted the branching of the TCA cycle with no flux through α -ketoglutarate dehydrogenase under anaerobic growth conditions. The largest errors occurred at the branch points of glycolysis and the TCA cycle, where there were drains for the synthesis of cellular constituents. Because the data used to develop the correlations for the biomass components came from many different experiments conducted under various growth conditions using various strains of *E. coli*, differences in biomass composition could be responsible for these discrepancies. A more complete set of experimental data is required to improve model predictions.

Sensitivity analysis was also performed to determine how changes in the fluxes would affect the basis matrix that was used to arrive at a given solution. This type of analysis indicates how much the flux through a given reaction can change and still allow the model to arrive at the optimal solution using the same basis matrix. This analysis indicates that during growth on glucose the reactions of glycolysis are the most constrained, with the TCA cycle and the pentose phosphate shunt reactions close behind. In contrast, the reactions of the TCA cycle are the most highly constrained during growth on acetate. Because the glycolysis and the TCA cycle reactions are involved in both energy and precursor production, one would expect them to be the most highly constrained reactions.

This metabolic model should be a useful tool for studying the effects of reengineering pathways. It can provide information about how the overall flux distribution will be affected if an organism is forced to synthesize a product or to degrade a pollutant. The model can also elucidate cases under which it will not be possible to satisfy growth demands and secrete a product of interest at a desired level. The sensitivity analysis can be used to study the stiffness of the solutions and the regions where bottlenecks may form under certain growth conditions. The model shows a high degree of sensitivity to the biomass information, and therefore the dependence of biomass composition on growth rates is an important aspect of a flux-based metabolic model.

Table IX. Sensitivity analysis of basis matrix with respect to flux constraints.

	Allowable fluxes ^a (% solution value)					
Pathway/enzyme	Glucose + acetate, aerobic	Acetate, aerobic	Glucose, anaerobic			
Glycolysis	94–103	84–100	100–101			
Pentose phosphate	95-109	81–100	94–101			
TCA cycle	90–106	100-100	92-142			
Carbon dioxide secretion	68–108	50-100	72–106			
Ammonia uptake	85–109	85-100	87–103			
Oxygen uptake	87–108	96-100				
Acetate secretion	48–116		46–117			
Precursors tightly constrained	Phosphatidylethanolamine	Phosphatidylethanolamine	Phosphatidylethanolamine			
	Arginine	Cardiolipin	•			
	Lysine	Cysteine				
	Leucine	Methionine				
	Valine					

^aValues refer to the amount the flux value can change without changing the basis matrix. The most tightly bounded reaction in a particular pathway determines the bounds on that pathway.

APPENDIX A: METABOLIC PATHWAYS IN STOICHIOMETRIC MATRIX GENE NAMES ARE SUPPLIED WHERE POSSIBLE.

Enzyme	Gene	Pathway	Reference
Glycolysis			
Phosphotransferase system	ptsI, ptsH	$GLC + PEP \rightarrow PYR + G6P$	Fraenkel, 1996; Postma et al., 1996
Phosphoglucose isomerase	pgi	$G6P \leftrightarrow F6P$	Fraenkel, 1996
Phosphofructokinase	pfk	$F6P + ATP \leftrightarrow ADP + F16P$	Fraenkel, 1996
Fructose-1,6-bisphosphate aldolase	fbp	$F16P + PI \rightarrow F6P$	Fraenkel, 1996
Fructose-1,6-bisphosphatase	fba	$F16P \leftrightarrow T3P1 + T3P2$	Fraenkel, 1996
Triosphosphate isomerase	tpi	$T3P1 \leftrightarrow T3P2$	Fraenkel, 1996
Glyceraldehyde-3-phosphate dehydrogenase	gap	$T3P1 + PI + NAD \leftrightarrow NADH + 13P2DG$	Fraenkel, 1996
Phosphoglycerate kinase	pgk	$13P2DG + ADP \leftrightarrow ATP + 3PDGL$	Fraenkel, 1996
Phosphoglycerate mutase	gpm	$3PDGL \leftrightarrow 2PDGL$	Fraenkel, 1996
Enolase	eno	$2PDGL \leftrightarrow PEP$	Fraenkel, 1996
Pyruvate kinase	pyk	$PEP + ADP \rightarrow ATP + PYR$	Fraenkel, 1996
PEP carboxykinase	pck	$OA + ATP \leftrightarrow PEP + CO2 + ADP$	Fraenkel, 1996
PEP carboxylase	ppc	$PEP + CO2 \rightarrow OA + PI$	Fraenkel, 1996
Pyruvate dehydrogenase	pdh	$PYR + COA + NAD \rightarrow NADH + CO2 + ACCOA$	Fraenkel, 1996
PEP synthase	pps	$PYR + ATP \rightarrow PEP + AMP + PI$	Fraenkel, 1996
Pentose phosphate shunt			
Glucose-6-phosphate dehydrogenase	zwf	$G6P + NADP \leftrightarrow D6PGL + NADPH$	Fraenkel, 1996
6-Phosphogluconolactonase	pgl	$D6PGL \rightarrow D6PGC$	Fraenkel, 1996
6-Phosphogluconate dehydrogenase	gnd	$D6PGC + NADP \leftrightarrow NADPH + CO2 + RL5P$	Fraenkel, 1996
Ribose-5-phosphate isomerase	rpi	$RL5P \leftrightarrow R5P$	Fraenkel, 1996
Ribose-5-phosphate epimerase	rpe	$RL5P \leftrightarrow X5P$	Fraenkel, 1996
Transketolase 1	tktA	$R5P + X5P \leftrightarrow T3P1 + S7P$	Fraenkel, 1996
Transaldolase	tal	$T3P1 + S7P \leftrightarrow E4P + F6P$	Fraenkel, 1996
Transketolase 2	tktB	$X5P + E4P \leftrightarrow F6P + T3P1$	Fraenkel, 1996
6-Phosphogluconate dehydrase	edd	$D6PGC \rightarrow 2K3D6PG$	Fraenkel, 1996
2-Keto-3-deoxy-6-phospho-	eda	$2K3D6PG \rightarrow T3P1 + PYR$	Fraenkel, 1996
gluconate aldolase			
Glycogen metabolism			
Phosphogluconomutase	pgm	$G6P \leftrightarrow G1P$	Fraenkel, 1996
Glycogen synthase	glgA	$G1P + ATP \rightarrow ADP + PPI + GLYCOGEN$	Preiss, 1996
Glycogen phosphorylase	glgP	$GLYCOGEN + PI \rightarrow G1P$	Preiss, 1996
Dissimilation of pyruvate			
Lactate dehydrogenase	ldh	$PYR + NADH \leftrightarrow NAD + LAC$	Bock and Sawers, 1996; Kessler and Knappe, 1996
Alcohol dehydrogenase	adh	$ACAL + NADH \leftrightarrow ETHANOL + NAD$	Bock and Sawers, 1996; Kessler and Knappe, 1996
Acetaldehyde dehydrogenase	adh	$AC + NADH \leftrightarrow NAD + ACAL$	Bock and Sawers, 1996; Kessler and Knappe, 1996
Pyruvate formate lyase	pfl	$PYR + COA \rightarrow ACCOA + FORMATE$	Bock and Sawers, 1996; Kessler and Knappe, 1996
Phosphotransacetylase	pta	$ACCOA + PI \leftrightarrow ACTP + COA$	Bock and Sawers, 1996; Kessler and Knappe, 1996
Acetate kinase	ackA	$ACTP + ADP \leftrightarrow ATP + AC$	Bock and Sawers, 1996; Kessler and Knappe, 1996
Formate hydrogen lyase	fhl	$FORMATE \rightarrow CO2$	Bock and Sawers, 1996; Kessler and Knappe, 1996
TCA cycle and glyoxylate bypass			ана кнарре, 1990
Citrate synthase	gltA	$ACCOA + OA \leftrightarrow COA + CIT$	Cronan and LaPorte, 1996
Aconitase	acn	$CIT \leftrightarrow ICIT$	Cronan and LaPorte, 1996
Isocitrate dehydrogenase	idh	$ICIT + NAD \leftrightarrow CO2 + NADH + AKG$	Cronan and LaPorte, 1996
2-Ketoglutarate dehydrogenase	sucAB	$AKG + NAD + COA \leftrightarrow CO2 + NADH + SUCCOA$	Cronan and LaPorte, 1996
Succinate thiokinase	sucCD	$SUCCOA + GDP + PI \leftrightarrow GTP + COA + SUCC$	Cronan and LaPorte, 1996
Succinate dehydrogenase	sdhABCD	$SUCC + FAD \rightarrow FADH2 + FUM$	Cronan and LaPorte, 1996
Fumurate reductase	frdABCD	$FUM + FADH2 \rightarrow SUCC + FAD$	Cronan and LaPorte, 1996
Fumarase	fumAB	$FUM \leftrightarrow MAL$	Cronan and LaPorte, 1996
Malate dehydrogenase	mdh	$MAL + NAD \leftrightarrow NADH + OA$	Cronan and LaPorte, 1996
Malic enzyme	mez	$MAL + NADP \rightarrow CO2 + NADPH + PYR$	Cronan and LaPorte, 1996
Malic enzyme	mez,	$MAL + NAD \rightarrow CO2 + NADH + PYR$	Cronan and LaPorte, 1996

Enzyme	Gene	Pathway	Reference
Isocitrate lyase	aceA	$ICIT \rightarrow GLX + SUCC$	Cronan and LaPorte, 1996
Malate synthase	aceB	$ACCOA + GLX \rightarrow COA + MAL$	Cronan and LaPorte, 1996
Respiration			
NADH dehydrogenase II	ndh	$NADH + Q \rightarrow NAD + QH2$	Gennis and Stewart, 1996
NADH dehydrogenase I	ndh	$NADH + Q \rightarrow NAD + QH2 + 4 HEXT$	Gennis and Stewart, 1996
Formate dehydrogenase		FORMATE + Q \rightarrow 2 HEXT + QH2 + CO2	Gennis and Stewart, 1996
Cytochrome oxidase bo3		$QH2 + 1/2 O2 \rightarrow Q + 4 HEXT$	Gennis and Stewart, 1996
Cytochrome oxidase bd		$QH2 + 1/2 O2 \rightarrow Q + 2 HEXT$	Gennis and Stewart, 1996
Succinate dehydrogenase complex		$FADH2 + Q \leftrightarrow FAD + QH2$	Gennis and Stewart, 1996
ATP synthesis		100 100 DY 0.110110	
F0F1-ATPase	unc	$ATP \leftrightarrow ADP + PI + 3 HEXT$	Harold and Maloney, 1996
Biosynthesis of aspartate		0.4 GLU 40D 41/G	D : 1006
Aspartate transaminase	aspC	$OA + GLU \leftrightarrow ASP + AKG$	Reitzer, 1996
Biosynthesis of asparagine	-	1.65 1.75 GY 1. GY 1. 1.65 DD	B 1 4005
Glutamine-dependent asparagine synthetase	asnB	$ASP + ATP + GLN \rightarrow GLU + ASN + AMP + PPI$	Reitzer, 1996
Ammonia-dependent asparagine synthetase	asnA	$ASP + ATP + NH3 \rightarrow ASN + AMP + PPI$	Reitzer, 1996
Biosynthesis of glutamate			
Glutamate dehydrogenase	gdhA	$AKG + NH3 + NADPH \rightarrow GLU + NADP$	Reitzer, 1996
Glutamine synthatase	glnA	$GLU + NH3 + ATP \rightarrow GLN + ADP + PI$	Reitzer, 1996
Glutamate synthase	gltBD	$AKG + GLN + NADPH \rightarrow NADP + 2 GLU$	Reitzer, 1996
Biosynthesis of alanine			
Glutamic-pyruvic transaminase		$PYR + GLU \leftrightarrow AKG + ALA$	Reitzer, 1996
Biosynthesis of arginine, putrescine,			
and spermidine			
N-Acetylglutamate synthase	argA	$GLU + ACCOA \rightarrow COA + NAGLU$	Glansdorf, 1996
N-Acetylglutamate kinase	argB	$NAGLU + ATP \rightarrow ADP + NAGLUYP$	Glansdorf, 1996
N-Acetylglutamate phosphate reductase	argC	$\begin{aligned} \text{NAGLUYP} + \text{NADPH} &\leftrightarrow \text{NADP} + \text{PI} \\ + \text{NAGLUSAL} \end{aligned}$	Glansdorf, 1996
Acetylornithine aminotransferase	argD	$NAGLUSAL + GLU \leftrightarrow AKG + NAARON$	Glansdorf, 1996
N-Acetylornithinase	argE	$NAARON \rightarrow AC + ORN$	Glansdorf, 1996
Carbamoyl phosphate synthetase	carAB	$GLN + 2 ATP + CO2 \rightarrow GLU + CAP + 2 ADP + PI$	Glansdorf, 1996
Ornithine carbamoyl transferase	argFI	$ORN + CAP \leftrightarrow CITR + PI$	Glansdorf, 1996
Argininosuccinate synthase	argG	$CITR + ASP + ATP \leftrightarrow AMP + PPI + ARGSUCC$	Glansdorf, 1996
Argininosuccinase	argH	$ARGSUCC \leftrightarrow FUM + ARG$	Glansdorf, 1996
Ornithine decarboxylase	speC	$ORN \rightarrow PTRSC + CO2$	Glansdorf, 1996
Spermidine synthase	spE	$PTRSC + DSAM \rightarrow SPRMD + 5MTA$	Glansdorf, 1996
Adenosylmethionine decarboxylase	speD	$SAM \leftrightarrow DSAM + CO2$	Glansdorf, 1996; Greene, 1996; Karp et al., 1996
Unknown pathway		$5MTA \rightarrow ADN + MET$	Greene, 1996
Agmatine decarboxylase	speA	$ARG \rightarrow CO2 + AGM$	Glansdorf, 1996
Agmatine ureohydrolase	speB	$AGM \rightarrow UREA + PTRSC$	Glansdorf, 1996
Biosynthesis of proline			
Glutamyl kinase	proB	$GLU + ATP \rightarrow ADP + GLUP$	Leisinger, 1996
Glutamate-5-semialdehyde dehydrogenase	proA	$\operatorname{GLUP} + \operatorname{NADPH} \leftrightarrow \operatorname{NADP} + \operatorname{PI} + \operatorname{GLUGSAL}$	Leisinger, 1996
Pyrroline-5-carboxylate reductase	proC	$GLUGSAL + NADPH \leftrightarrow PRO + NADP$	Leisinger, 1996
Ornithine oxoacid transaminase		$ORN + AKG \leftrightarrow GLU + GLUGSAL$	Leisinger, 1996
Biosynthesis of branched-chain amino acids			
Isopropylmalate synthase	leuA	$ACCOA + OIVAL \rightarrow COA + CBHCAP$	Umbarger, 1996
Isopropylmalate isomerase	leuCD	$CBHCAP \leftrightarrow IPPMAL$	Umbarger, 1996
3-Isopropylmalate dehydrogenase	leuB	$IPPMAL + NAD \rightarrow NADH + OICAP + CO2$	Umbarger, 1996
Transaminase C	ilvE	$OICAP + GLU \rightarrow AKG + LEU$	Umbarger, 1996
Acetyohydroxy acid synthase	ilvB	$2 \text{ PYR} \rightarrow \text{CO2} + \text{ACLAC}$	Umbarger, 1996
Acetohydroxy acid isomeroreductase	ilvC	$ACLAC + NADPH \rightarrow NADP + DHVAL$	Umbarger, 1996
Dihydroxy acid dehydratase	ilvD	$DHVAL \rightarrow OIVAL$	Umbarger, 1996
Transaminase C	ilvE	$OIVAL + GLU \leftrightarrow AKG + VAL$	Umbarger, 1996
Threonine deaminase	ilvA	$THR \rightarrow NH3 + OBUT$	Umbarger, 1996
Acetohydroxy acid synthase	ilvB	$OBUT + PYR \rightarrow ABUT + CO2$	Umbarger, 1996

Enzyme	Gene	Pathway	Reference
Acetohydroxy acid isomeroreductase	ilvC	$ABUT + NADPH \rightarrow NADP + DHMVA$	Umbarger, 1996
Dihydroxy acid dehydratase	ilvD	$DHMVA \rightarrow OMVAL$	Umbarger, 1996
Transaminase B	ilvE	$OMVAL + GLU \leftrightarrow AKG + ILE$	Umbarger, 1996
Amino acid oxidase		$O2 + ILE \rightarrow OMVAL + NH3$	Umbarger, 1996
Biosynthesis of aromatic amino acids			
3-Deoxy-D-arabinoheptulosonate-7- phosphate synthase	aroFGH	$E4P + PEP \rightarrow PI + 3DDAH7P$	Pittard, 1996
3-Dehydroquinate synthase	aroB	$3DDAH7P \rightarrow DQT + PI$	Pittard, 1996
3-Dehydroquinate dehydratase	aroD	DQT ↔ DHSK	Pittard, 1996
Shikimate dehydrogenase	aroE	$DHSK + NADPH \leftrightarrow SME + NADP$	Pittard, 1996
Shikimate kinase	aroKL	$SME + ATP \rightarrow ADP + SME5P$	Pittard, 1996
5-Enolpyruvoylshikimate-3-phosphate synthase	aroA	$SME5P + PEP \leftrightarrow 3PSME + PI$	Pittard, 1996
Chorismate synthase	aroC	$3PSME \rightarrow PI + CHOR$	Pittard, 1996
Chorismate mutase	pheA	$CHOR \rightarrow PHEN$	Pittard, 1996
Prephenate dehydratase	pheA	$PHEN \rightarrow CO2 + PHPYR$	Pittard, 1996
Phenylalanine aminotransferase	tyrB	$PHPYR + GLU \leftrightarrow AKG + PHE$	Pittard, 1996
Prephanate dehydrogenase	tyrA	PHEN + NADP \rightarrow HPHPYR + CO2 + NADPH	Pittard, 1996
Tyrosine aminotransferase	tyrB	$\begin{array}{c} \text{HPHPYR} + \text{GLU} \leftrightarrow \text{AKG} + \text{TYR} \\ \end{array}$	Pittard, 1996
Anthranilate synthase	trpDE	CHOR + GLN \rightarrow GLU + PYR + AN	Pittard, 1996
Anthranilate phosphoribosyl transferase	trpD	$AN + PRPP \rightarrow PPI + NPRAN$	Pittard, 1996
Phosphoribosyl anthranilate isomerase	trpC	$NPRAN \rightarrow CPAD5P$	Pittard, 1996
Indoleglycerol phosphate synthetase	trpC	$CPAD5P \rightarrow CO2 + IGP$	Pittard, 1996
Tryptophan synthetase	trpAB	$IGP + SER \rightarrow T3P1 + TRP$	Pittard, 1996
Biosynthesis of histidine synthesis	v.p.12	101 - 1021 - 110	111111111111111111111111111111111111111
Phosphoribosyl pyrophosphate synthetase	prs	$R5P + ATP \leftrightarrow PRPP + AMP$	Zalkin and Nygaard, 1996
Phosphoribosyl pyrophosphate	hisG	$PRPP + ATP \rightarrow PPI + PRBATP$	Winkler, 1996
PR-ATP pyrophosphohydrolase	hisI	$PRBATP \rightarrow PPI + PRBAMP$	Winkler, 1996
PR-AMP cyclohydrolase	hisI	PRBAMP → PRFP	Winkler, 1996
5-ProFAR isomerase	hisA	PRFP → PRLP	Winkler, 1996
Imidazoleglycerol phosphate synthase	hisFH	$PRLP + GLN \rightarrow GLU + AICAR + DIMGP$	Winkler, 1996
IGP dehydratase	hisB	DIMGP → IMACP	Winkler, 1996
L-Histidinol phosphate	hisC	$IMACP + GLU \rightarrow AKG + HISOLP$	Winkler, 1996
aminotransferase	7775	marer / oze / me / moozi	,, mmer, 1330
Hol- <i>P</i> -phosphatase	hisB	$HISOLP \rightarrow PI + HISOL$	Winkler, 1996
Hol dehydrogenase	hisD	HISOL + 2 NAD \rightarrow 2 NADH + HIS	Winkler, 1996
Biosynthesis of serine, glycine, and 1-carbon units	nisb	INDOE E IVID / E IVIDII IND	Winard, 1990
3-Phosphoglycerate dehydrogenase	serA	$3PDGL + NAD \rightarrow NADH + PHP$	Stauffer, 1996
Phosphoserine transaminase	serC	$PHP + GLU \rightarrow AKG + 3PSER$	Stauffer, 1996
Phosphoserine phosphatase	serB	$3PSER \rightarrow PI + SER$	Stauffer, 1996
Serine hydroxymethyltransferase Glycine cleavage system	glyA gcvHTP	$\begin{aligned} & \text{GLY} + \text{METTHF} &\leftrightarrow \text{THF} + \text{SER} \\ & \text{GLY} + \text{THF} + \text{NAD} &\to \text{METTHF} + \text{NADH} \end{aligned}$	Matthews, 1996; Stauffer, 1996 Matthews, 1996; Stauffer, 1996
		+ CO2 + NH3	10.5
Threonine dehydrogenase	thd	$THR + NAD \leftrightarrow AABK + NADH$	Matthews, 1996
Amino-b-ketobutyrase	kbl	$AABK + COA \leftrightarrow GLY + ACCOA$	Matthews, 1996
Formate dehydrogenase		$FORMATE + NAD \rightarrow NADH + CO2$	Kadner, 1996
Formate THF ligase		THF + FORMATE + ATP \rightarrow ADP + PI + FTHF	Michal, 1993
Formyl THF deformylase		$FTHF \rightarrow FORMATE + THF$	Michal, 1993
Dihydrofolate reductase (STEP 2)		$DHF + NADPH \leftrightarrow NADP + THF$	Michal, 1993
Biosynthesis of cysteine			
ATP sulfhydrolase	cysDN	$H2SO4 + ATP \rightarrow PPI + APS$	Kredich, 1996
ATS kinase	cysC	$APS + ATP \rightarrow ADP + PAPS$	Kredich, 1996
PAPS sulfotransferase	cysH	$PAPS + NADPH \rightarrow NADP + H2SO3 + PAP$	Kredich, 1996
NAHPH-sulfite reductase	cysGIJ	$H2SO3 + 3 NADPH \leftrightarrow 3 NADP + H2S$	Kredich, 1996
Serine transacetylase	cysE	$SER + ACCOA \leftrightarrow COA + ASER$	Kredich, 1996
O-Acetylserine (thiol)-lyase	cysKM	$ASER + H2S \rightarrow AC + CYS$	Kredich, 1996
Sulfotransferase		$PAP + H2SO3 \leftrightarrow PAPS$	
Adenylyl sulfate kinase		$PAPS + ADP \rightarrow ATP + APS$	

Enzyme Gene Pathway		Reference	
Biosynthesis of threonine and lysine			
Aspartate kinase	thrA	$ASP + ATP \leftrightarrow ADP + BASP$	Patte, 1996
Aspartate semialdehyde	asd	$BASP + NADPH \leftrightarrow NADP + PI + ASPSA$	Patte, 1996
dehydrogenase			
Homoserine dehydrogenase	thrA	$ASPSA + NADPH \leftrightarrow NADP + HSER$	Patte, 1996
Homoserine kinase	thrB	$HSER + ATP \rightarrow ADP + PHSER$	Patte, 1996
Threonine synthase	thrC	$PHSER \rightarrow PI + THR$	Patte, 1996
Dihydrodipicolinate synthase	dapA	$ASPSA + PYR \rightarrow D23PIC$	Patte, 1996
Dihydrodipicolinate reductase	dapB	D23PIC + NADPH \rightarrow NADP + PIP26DX	Patte, 1996
Tetrahydrodipicolinate succinylase Succinyl diaminopimelate	dapD dapC	$PIP26DX + SUCCOA \rightarrow COA + NS2A6O$ $NS2A6O + GLU(A)AVG + NS26DB$	Patte, 1996 Patte, 1996
aminotransferase	аарс	$NS2A6O + GLU \leftrightarrow AKG + NS26DP$	ratie, 1990
Succinyl diaminopimelate	dapE	NS26DP → SUCC + D26PIM	Patte, 1996
desuccinylase	ширЕ	NS20DI -> SUCC + D20I IWI	1 atte, 1990
Diaminopimelate epimerase	dapF	$D26PIM \leftrightarrow MDAP$	Patte, 1996
Diaminopimelate decarboxylase	lysA	$MDAP \rightarrow CO2 + LYS$	Patte, 1996
Biosynthesis of methionine	1 9 3 2 1	MDM 7 CO2 + E15	1 atte, 1990
Homoserine transsuccinylase	metA	$HSER + SUCCOA \rightarrow COA + OSLHSER$	Greene, 1996
Cystathionine synthase	metB	OSLHSER + CYS \rightarrow SUCC + HCYS + PYR + NH3	Greene, 1996
Cystathionase	metC	HCYS + ADN ↔ SAH	Greene, 1996
Methionine synthase	metEH	$HCYS + MTHF \rightarrow MET + THF$	Greene, 1996; Matthews, 1996
Methionyl adenosyl transferase	metK	$MET + ATP \rightarrow PPI + PI + SAM$	Greene, 1996; Matthews, 1996
Biosynthesis of purine nucleotides			, ., .,
Glutamine PRPP amidotransferase	purF	$PRPP + GLN \rightarrow PPI + GLU + PRAM$	Zalkin and Nygaard, 1996
GAR synthetase	purD	$PRAM + ATP + GLY \leftrightarrow ADP + PI + GAR$	Zalkin and Nygaard, 1996
GAR transformylase	purNT	$GAR + FTHF \rightarrow THF + FGAR$	Zalkin and Nygaard, 1996
FGAM synthetase	purL	$FGAR + ATP + GLN \rightarrow GLU + ADP + PI + FGAM$	Zalkin and Nygaard, 1996
AIR synthetase	purM	$FGAM + ATP \rightarrow ADP + PI + AIR$	Zalkin and Nygaard, 1996
RCAIM synthetase	purK	$AIR + CO2 \leftrightarrow RCAIM$	Zalkin and Nygaard, 1996
PRSCAIM synthetase	purE	$RCAIM + ATP + ASP \leftrightarrow ADP + PI + PRSCAIM$	Zalkin and Nygaard, 1996
Adenylosuccinate lyase	purB	$PRSCAIM \leftrightarrow FUM + AICAR$	Zalkin and Nygaard, 1996
AICAR transformylase	purH	$AICAR + FTHF \leftrightarrow THF + PRFICA$	Zalkin and Nygaard, 1996
IMP cyclohydrolase	purH	$PRFICA \leftrightarrow IMP$	Zalkin and Nygaard, 1996
Adenylosuccinate synthetase	purA	$IMP + GTP + ASP \rightarrow GDP + PI + ASUC$	Zalkin and Nygaard, 1996
Adenylosuccinate lyase	purB	$ASUC \leftrightarrow FUM + AMP$	Zalkin and Nygaard, 1996
AMP phosphatase		$AMP \rightarrow PI + ADN$	Zalkin and Nygaard, 1996
Adenylate kinase	adk	$ATP + ADN \rightarrow ADP + AMP$	Zalkin and Nygaard, 1996
Adenylate kinase	adk	$ATP + AMP \rightarrow 2 ADP$	Zalkin and Nygaard, 1996
IMP dehydrogenase	guaB	$IMP + NAD \rightarrow NADH + XMP$	Zalkin and Nygaard, 1996
GMP synthetase	guaA	$XMP + ATP + GLN \rightarrow GLU + AMP + PPI + GMP$	Zalkin and Nygaard, 1996
GMP kinase	gmk	$GMP + ATP \leftrightarrow GDP + ADP$	Zalkin and Nygaard, 1996
GDP kinase	gmk	$GDP + ATP \leftrightarrow GTP + ADP$	Zalkin and Nygaard, 1996
Ribonucleotide reductase (ADP)	deoD	$ADP + NADPH \rightarrow DADP + NADP$	Zalkin and Nygaard, 1996
Ribonucleotide reductase (GDP)	deoD	$GDP + NADPH \rightarrow DGDP + NADP$	Zalkin and Nygaard, 1996
Ribonucleotide reductase (ATP)	deoD	$ATP + NADPH \rightarrow NADP + DATP$ $CTP + NADPH \rightarrow NADP + DCTP$	Zalkin and Nygaard, 1996
Ribonucleotide reductase (GTP)	deoD	$GTP + NADPH \rightarrow NADP + DGTP$	Zalkin and Nygaard, 1996
dADP kinase	nck	$DADP + ATP \leftrightarrow DATP + ADP$	Zalkin and Nygaard, 1996
dGDP kinase dAMP kinase	ndk ndk	$DGDP + ATP \leftrightarrow DGTP + ADP$ $DAMP + ATP \leftrightarrow ADP + DADP$	Zalkin and Nygaard, 1996 Zalkin and Nygaard, 1996
dGMP kinase		$DAMP + ATP \leftrightarrow ADP + DADP$ $DCMP + ATP \leftrightarrow DCDP + ADP$	Zalkin and Nygaard, 1996 Zalkin and Nygaard, 1996
Biosynthesis of pyrimidines	ndk	$DGMP + ATP \leftrightarrow DGDP + ADP$	Zaikiii alid Nygaard, 1990
Aspartate carbamoyl transferase	pyrBI	$CAP + ASP \rightarrow CAASP + PI$	Neuhard and Klein, 1996
Dihydroorotase	pyr B 1 pyrC	$CAASP \leftrightarrow DOROA$	Neuhard and Klein, 1996
Dihydroorotate dehydrogenase	pyrC pyrD	$OROA + NAD \leftrightarrow NADH + OROA$	Neuhard and Klein, 1996
Orotate phosphoribosyl transferase	pyrE pyrE	$OROA + PRPP \leftrightarrow PPI + OMP$	Neuhard and Klein, 1996
OMP decarboxylase	pyrE pyrF	$OMP \rightarrow CO2 + UMP$	Neuhard and Klein, 1996
UMP kinase	pyrH pyrH	$UMP + ATP \leftrightarrow UDP + ADP$	Neuhard and Klein, 1996
UDP kinase	ndk	$UDP + ATP \leftrightarrow UTP + ADP$	Neuhard and Klein, 1996
CTP synthetase	pyrG	$UTP + GLN + ATP \rightarrow GLU + CTP + ADP + PI$	Neuhard and Klein, 1996
CMP kinase	ndk	$CMP + ATP \leftrightarrow CDP + ADP$	Neuhard and Klein, 1996
CDP kinase	ndk	$CDP + ATP \leftrightarrow CTP + ADP$	Neuhard and Klein, 1996
Deoxycytidilate deaminase	cdd	$DCMP \rightarrow NH3 + DUMP$	Neuhard and Klein, 1996

Enzyme	Gene	Pathway	Reference
Ribonucleotide reductase (CDP)	nrdAB	$CDP + NADPH \rightarrow DCDP + NADP$	Neuhard and Klein, 1996
Ribonucleotide reductase (UDP)	nrdAB	$UDP + NADPH \rightarrow DUDP + NADP$	Neuhard and Klein, 1996
Ribonucleotide reductase (CTP)	nrdAB	$CTP + NADPH \rightarrow DCTP + NADP$	Neuhard and Klein, 1996
Ribonucleotide reductase (UTP)	nrdAB	$UTP + NADPH \rightarrow NADP + DUTP$	Neuhard and Klein, 1996
dCMP kinase	ndk	$DCMP + ATP \leftrightarrow ADP + DCDP$	Neuhard and Klein, 1996
dCDP kinase	ndk	$DCDP + ATP \leftrightarrow DCTP + ADP$	Neuhard and Klein, 1996
dUDP kinase	ndk	$DUDP + ATP \leftrightarrow DUTP + ADP$	Neuhard and Klein, 1996
dUTP pyrophosphatase	dut	$DUTP \rightarrow PPI + DUMP$	Neuhard and Klein, 1996
dUMP kinase	ndk	$DUMP + ATP \leftrightarrow ADP + DUDP$	Neuhard and Klein, 1996
Thymidilate synthetase	thyA	$DUMP + METTHF \rightarrow DHF + TMP$	Matthews, 1996; Neuhard and Klein, 1996
TMP kinase	tmk	$TMP + ATP \leftrightarrow ADP + TDP$	Neuhard and Klein, 1996
TDP kinase	ndk	$TDP + ATP \leftrightarrow ADP + TTP$	Neuhard and Klein, 1996
Biosynthesis of THF			
Methylene THF reductase	metF	$METTHF + NADH \rightarrow NAD + MTHF$	Matthews, 1996
Methylene THF dehydrogenase	folD	$METTHF + NADP \leftrightarrow METHF + NADPH$	Matthews, 1996
Methenyl tetrahydrofolate cyclehydrolase	folD	$METHF \leftrightarrow FTHF$	Matthews, 1996
Biosynthesis of membrane lipids			
Acetyl-CoA carboxylase	acc	$ACCOA + ATP + CO2 \leftrightarrow MALCOA + ADP + PI$	Cronan and Rock, 1996
Malonyl-CoA:ACP transacylase	mta	$MALCOA + ACP \leftrightarrow MALACP + COA$	Cronan and Rock, 1996
b-Ketoacyl-ACP synthase I	kas1	$MALACP \rightarrow ACACP + CO2$	Cronan and Rock, 1996
Acetyl-CoA:ACP transacylase	ata	$ACACP + COA \leftrightarrow ACCOA + ACP$	Cronan and Rock, 1996
b-Ketoacyl-ACP synthase I (C14:0)	fab	ACACP + 6 MALACP + 12 NADPH \rightarrow C14:0ACP + 6 CO2 + 12 NADP + 6 ACP	Cronan and Rock, 1996
b-Ketoacyl-ACP synthase I (C14:1) fab		$ACACP + 6 MALACP + 11 NADPH \rightarrow C14:1ACP + 6 CO2 + 11 NADP + 6 ACP$	Cronan and Rock, 1996
b-Ketoacyl-ACP synthase I (C16:0) fab		ACACP + 7 MALACP + 14 NADPH \rightarrow C16:0ACP + 7 CO2 + 14 NADP + 7 ACP	Cronan and Rock, 1996
b-Ketoacyl-ACP synthase I (C16:1)			Cronan and Rock, 1996
b-Ketoacyl-ACP synthase I (C18:1)	fab	ACACP + 8 MALACP + 15 NADPH \rightarrow C18:1ACP + 8 CO2 + 15 NADP + 8 ACP	Cronan and Rock, 1996
Glycerol-3-phosphate dehydrogenase	gpsA	$NADH + T3P2 \leftrightarrow GL3P + NAD$	Cronan and Rock, 1996
1-Acyl-G3P acyltransferase	pls	GL3P + 0.03 C14:0ACP + 0.086 C14:1ACP + 0.607 C16:0ACP + 0.12 C16:1ACP + 0.85 C18:1ACP → PA + 1.693 ACP	Cronan and Rock, 1996
CDP-Diacylglycerol synthetase	cdsA	$PA + CTP \leftrightarrow CDPDG + PPI$	Cronan and Rock, 1996
Phosphatidylserine synthase	pssA	$CDPDG + SER \leftrightarrow CMP + PS$	Cronan and Rock, 1996
PS decarboxylase	psd	$PS \rightarrow PE + CO2$	Cronan and Rock, 1996
Phosphatidylglycerol phosphate synthase	pgsA	$CDPDG + GL3P \leftrightarrow CMP + PGP$	Cronan and Rock, 1996
Phosphatidylglycerol phosphate phosphate	pgpA	$PGP \rightarrow PI + PG$	Cronan and Rock, 1996
Cardiolipin synthase Biosynthesis of isoprenoids	cls	$PG + CDPDG \leftrightarrow CL + CMP$	Cronan and Rock, 1996
Aldose reductase		$GL + NADP \leftrightarrow NADPH + GLAL$	White, 1996
Glyceraldehyde kinase		$GLAL + ATP \rightarrow ADP + T3P1$	White, 1996
Hydroxymethyl-glutaryl-CoA synthase		$3 \text{ ACCOA} \rightarrow 2 \text{ COA} + \text{HMGCOA}$	White, 1996
3-Methyl-glutaconyl-CoA hydratase		$HMGCOA \leftrightarrow TMGCOA$	White, 1996
IPP synthase		HMGCOA + 2 NADPH + 3 ATP \rightarrow COA + 2 NADP + 3 ADP +1 PI + CO2 + IPPP	White, 1996
GGPP synthase		$4 \text{ IPPP} \rightarrow 3 \text{ PPI} + \text{GGPP}$	White, 1996
Methylcrotonyl-CoA carboxylase		MCCOA + ATP + CO2 ↔ ADP + TMGCOA + PI	Michal, 1996
Acyl-CoA dehydrogenase		$ISOVCOA + Q \leftrightarrow QH2 + MCCOA$	Michal, 1996
2-Keto-isocaproate decarboxylase		OICAP + COA + NADP → NADPH + CO2 + ISOVCOA	Michal, 1996
Biosynthesis of quinone	.1:0		Managed 1005
Chorismate pyruvate-lyase	ubiC	$CHOR \rightarrow 4HBZ + PYR$	Meganathan, 1996
Hydroxybenzoate octaprenyl- transferase	ubiADX	$4HBZ + GGPP \rightarrow 2PPP + CO2 + PPI$	Meganathan, 1996

Enzyme	Gene	Pathway	Reference
2O6H synthetase	ubiB	2PPP + O2 → 2O6H	Meganathan, 1996
QH2 synthetase	ubiEFGH	$2O6H + 2 O2 + 3 SAM \rightarrow 3 SAH + QH2$	Meganathan, 1996
Biosynthesis of riboflavin			
GTP cyclohydrolase	ribA	$GTP \rightarrow D6RP5P + CO2 + PPI$	Bacher et al., 1996
Pyimidine deaminase	ribD	$D6RP5P \rightarrow A6RP5P + NH3$	Bacher et al., 1996
Pyrimidine reductase	ribD	$A6RP5P + NADPH \rightarrow A6RP5P2 + NADP$	Bacher et al., 1996
Phosphatase		$A6RP5P2 \rightarrow A6RP + PI$	Bacher et al., 1996
3,4-Dihydroxy-2-butanone-4-phosphate synthase	ribB	A6RP → DB4P + FORMATE	Bacher et al., 1996
6,7-Dimethyl-8-ribityllumazine synthase	ribE	$DB4P + A6RP \rightarrow D8RL + PI$	Bacher et al., 1996
Riboflavin synthase	ribC	$2 D8RL \rightarrow RIBOFLAVIN + A6RP$	Bacher et al., 1996
Riboflavin kinase	ribF	$RIBOFLAVIN + ATP \rightarrow FMN + ADP$	Bacher et al., 1996
FAD synthetase	ribF	$FMN + ATP \rightarrow FAD + PPI$	Bacher et al., 1996
Biosynthesis of folate			
GTP cyclohydrolase	folE	$GTP \rightarrow FORMATE + AHTD$	Green et al., 1996
H2Neopterin triphosphate pyrophosphatase		$AHTD \rightarrow 3 PI + DHP$	Green et al., 1996
H2Neopterin aldolase		$DHP \rightarrow AHHMP + GLAL$	Green et al., 1996
6-Hydroxymethyl H2pterin pyrophosphokinase	fol K	$AHHMP + ATP \rightarrow AMP + AHHMD$	Green et al., 1996
H2pteroate synthase	fol P	$AN + AHHMD \rightarrow PPI + DHD$	Green et al., 1996
Dihydrofolate reductase	folA	$DHD + ATP + GLU \rightarrow ADP + PI + DHF$	Green et al., 1996
Biosynthesis of coenzyme A			
CoA Synthase	panBCDE	OIVAL + METTHF + NADPH + ALA + CTP + 4 ATP + CYS \rightarrow THF + NADP + AMP + 2 PPI + 2 ADP + CO2 + COA	Jackowski, 1996 (Lumped pathway)
ACP Synthase	acpS	$COA \rightarrow 35ADP + ACP$	Jackowski, 1996
3,5-ADP phosphatase	•	$35ADP \rightarrow AMP + PI$	•
Biosynthesis of NAD			
Quinolate synthase	nadAB	$ASP + FAD + T3P2 \rightarrow FADH2 + PI + QNL$	Penfound and Foster, 1996
Quinolate phosphoribosyl transferase	nadC	$QNL + PRPP \rightarrow PPI + NICNT + CO2$	Penfound and Foster, 1996
NAMN adenylyl tranferase	nadD	$NICNT + ATP \rightarrow PPI + DANAD$	Penfound and Foster, 1996
Deamido-NAD ammonia ligase	nadE	$DANAD + ATP + NH3 \rightarrow AMP + PPI + NAD$	Penfound and Foster, 1996
NAD kinase		$NAD + ATP \rightarrow NADP + ADP$	Penfound and Foster, 1996
NADP phosphatase		$NADP \rightarrow NAD + PI$	Penfound and Foster, 1996
Biosynthesis of porphyrins and hemes			
GSA synthetase	gltX, hemA	$\begin{aligned} \text{GLU} + \text{ATP} + \text{NADPH} &\rightarrow \text{GSA} + \text{AMP} + \text{PPI} \\ + \text{NADP} \end{aligned}$	Beale, 1996
GSA aminotransferase	hemL	$GSA \rightarrow ALAV$	Beale, 1996
Porphyrinogen synthetase	hemBCD	$8 \text{ ALAV} \rightarrow \text{PORPH} + \text{NH3}$	Beale, 1996
Biosynthesis of lippopolysaccharide and murein			
Glutamine fructose-6-P transaminase	glmS	$F6P + GLN \rightarrow GLU + GA6P$	Raetz, 1996
Glucosamine-P acetyl transferase	glmU	$GA6P + ACCOA \rightarrow AGA6P + COA$	Raetz, 1996
Acetyl glucosamine mutase	glmU	$AGA6P \leftrightarrow AGA1P$	Raetz, 1996
UDP N-acetylglucosamine		$AGA1P + UTP \leftrightarrow PPI + UDPGA$	
pyrophorylase UDP N-acetylglucosamine		$UDPGA \leftrightarrow UDPGLN$	
4-epimerase	1.1.4	HDDGA - DED - DI HDDGG	D 4 1006
N-Acylglucosamine-6-P 2-epimerase UDP-N-acetylmuramate	kdsA	$\begin{array}{l} \text{UDPGA} + \text{PEP} \leftrightarrow \text{PI} + \text{UDPGC} \\ \text{UDPGC} + \text{NADH} \rightarrow \text{UDPAM} + \text{NAD} \end{array}$	Raetz, 1996
dehydrogenase CMP-2-keto-3-deoxyoctanoate synthase	kdsB	$R5P + PEP + CTP \rightarrow 2 PI + PPI + CMPKDO$	Raetz, 1996
Isomerase+mutase+pyropho- phorylase+epimerase		$S7P + ATP \leftrightarrow ADPHEP + PPI$	
Ethanolamine phosphotransferase		$PE + CMP \leftrightarrow CDPETN + DGR$	Michal, 1993
Phosphatidate phosphatase		$PA \leftrightarrow PI + DGR$	Michal, 1993
Lyposaccharide synthetase		3 UDPGLN + 5 C14:0 + 2 ATP + 3 CMPKDO + CDPETN + 3 ADPHEP + 2 UDPG + PE+ 2	,
		UDPGAL \rightarrow 2 AC + UMP + 6 UDP + 5 ADP + 3 CMP + DGR + LPS	

Enzyme	Gene	Pathway	Reference
UDP glucose synthase		$G1P + UTP \rightarrow PPI + UDPG$	
UDP galactose synthase		$G1P + UTP \leftrightarrow PPI + UDPGAL$	
Murein synthetase		UDPGA + UDPAM + 2 ALA + D26PIM + GLU	
•		$+$ 5 ATP \rightarrow PEPTIDO $+$ 5 ADP $+$ 5 PI $+$ 2 UDP	
Polyphosphate and pyrophosphate metabolism			
Pyrophosphatase	ppa	$PPI \rightarrow 2 PI$	Wanner, 1996
Polyphosphate kinase	ppk	$1000 \text{ ATP} \leftrightarrow 1000 \text{ ADP} + \text{POLYP}$	Wanner, 1996
Polyphosphatase	ppx	$POLYP \rightarrow 1000PI$	Wanner, 1996
Transport reactions			
Ammonia transport		$NH3ext + Hext \leftrightarrow NH3$	Silver, 1996
Sulfate transport		$H2SO4ext \leftrightarrow H2SO4$	
Phosphate transport	pit	$PIext + Hext \leftrightarrow PI$	Wanner, 1996
Acetate transport		$ACext + Hext \leftrightarrow AC$	
Lactate transport		$LACext + Hext \leftrightarrow LAC$	
Formate transport		$FORMATEext + Hext \leftrightarrow FORMATE$	
Ethanol transport		$ETHANOLext \leftrightarrow ETHANOL$	
Succinate transport		$SUCCext + Hext \leftrightarrow SUCC$	
D-Glyceraldehyde transport		$GLALext + Hext \leftrightarrow GLAL$	
Glucose transport		$GLCext \leftrightarrow GLC$	
Carbon dioxide transport		CO_2 ext $\leftrightarrow CO_2$	
Oxygen transport		O_2 ext \leftrightarrow O_2	
Glycerol metabolism			
Glycerol kinase		$GL + ATP \leftrightarrow GL3P + ADP$	Karp et al., 1996
Glycerol-3-phosphate dehydrogenase		$GL3P + FAD \rightarrow T3P2 + FADH2$	Karp et al., 1996

APPENDIX B: METABOLITE DEFINITIONS

2.123, 22222		7.1 LINDIX B. GOITHINGED		
Abbreviation	Compound	Abbreviation	Compound	
13P2DG 2K3D6PG	1,3- <i>P</i> -D glycerate 2-Dehydro-3-deoxy-6- <i>P</i> -gluconate	AHTD	2-Amino-4-hydroxy-6-(erythro-1-2-3-trihydroxypropyl) dihydropteridine-phosphate	
2O6H	2-Octaprenol 6-hydroxyphenol	AICAR	5-Phosphoribosyl-5-amino-4-imidazole carboxamide	
2PDGL	2-P-D glycerate	AIR	5-Phosphoribosyl-5-aminoimidazole	
2PPP	2-Polyprenylphenol	AKG	α-Ketoglutarate	
3DDAH7P	3-Deoxy-D-arabinoheptulosonate-7-phosphate	ALA	Alanine	
3PDGL	3 P-D glycerate	ALAV	δ-Amonolevulinate	
3PSER	3-Phosphoserine	AMP	Adenosine monophosphate	
3PSME	o (1-Carboxyvinyl)-3-D-shikimate	AN	Anthranilate	
4HBZ	4-Hydroxybenzoate	APS	Adenylyl sulfate	
5MTA	5'-Methylthioadenosine	ARG	Arginine	
A6RP	5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione	ARGSUCC	1-Arginiosuccinate	
A6RP5P	5-Amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione	ASER	o-Acetylserine	
	5'-phosphate	ASN	Asparagine	
A6RP5P2	5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione	ASP	Aspartate	
	5'-phosphate	ASPSA	Aspartate β-semialdehyde	
AABK	2-Amino-3-ketobutyrate	ASUC	Adenylsuccinate	
ABUT	2-Aceto-2-hydroxybutyrate	ATP	Adenosine triphosphate	
AC	Acetate	BASP	β-Aspartyl-phosphate	
ACACP	Acetyl-ACP	C14:0ACP	Myristic acid ACP	
ACAL	Acetaldehyde	C14:1ACP	β-Hydroxymyristic acid ACP	
ACCOA	Acetyl-CoA	C16:0ACP	Palmitic acid ACP	
ACTP	Acetyl-phosphate	C16:1ACP	Palmitoleic acid ACP	
ADN	Adenosine	C18:1ACP	cis-Vaccenic acid ACP	
ADP	Adenosine diphosphate	CAASP	Carbamoyl aspartate	
ADPHEP	ADP-mannoheptose	CAP	Carbamoyl phosphate	
AGA1P	N-Acetyl-D-glucosamine-1-phosphate	CBHCAP	3-Carboxy-3-hydroxy-isocaproate	
AGA6P	<i>N</i> -Acetyl-D-glucosamine-6-phosphate	CDP	Cytidine diphosphate	
AHHMD	2-Amino-4-hydroxy-6-hydroxymethyl	CDPDG	CDP-2-Diacylglycerol	
	dihydropteridine-pyrophosphate	CDPETN	CDP-Ethanolamine	
AHHMP	2-Amino-4-hydroxy-6-hydroxymethyl dihydropteridine	CHOR	Chorismate	

Abbreviation	Compound	Abbreviation	Compound
CITR	Citrulline	GLX	Glyoxylate
CL	Cardiolypin	GLY	Glycine
CMP	Cytidine monophosphate	GLYCOGEN	Glycogen
CMPKDO	CMP-2-Keto-3-deoxyoctanoate	GMP	Guanosine monophosphate
CO2	Carbon dioxide	GSA	Glutamate 1-semialdehyde
COA	Coenzyme A-SH	GTP	Guanosine triphosphate
CPAD5P	1-o-Carboxyphenylamino 1-deoxyribulose-5-phosphate	H2S	Hydrogen sulfide
CTP	Cytidine triphosphate	H2SO3	Hydrogen sulfite
CYS	Cysteine	H2SO4	Hydrogen sulfate
D23PIC	2,3-Dihydrodipicolinate	HCYS	Homocysteine
D26PIM	L,L-2,6-Diaminopimelate	HEXT	External H ⁺
D6PGC	D-6-Phosphoglucono-δ-lactone	HIS	Histidine
D6PGL	D-6-Phosphogluconate	HISOL	Histidinol
D6RP5P	2,5-Diamino-6-ribosylamino-4(3H)-pyrimidinedione	HISOL-P	1-Histidinol-phosphate
	5'-phosphate	HMGCOA	3-Hydroxy-3-methyl-glutaryl CoA
D8RL	6,7-Dimethyl-8-ribityllumazine	HPHPYR	para-Hydroxy phenyl pyruvate
DADP	Deoxyadenosine diphosphate	HSER	Homoserine
DANAD	Deamido-NAD	ICIT	Isocitrate
DATP	Deoxyadenosine triphosphate	IGP	Indole glycerol phosphate
DB4P	L-3,4-Dihydroxy-2-butanone-4-phosphate	ILE	Isoleucine
DCDP	Deoxycytidine diphosphate	IMACP	Imidazole acetyl-phosphate
DCTP	Deoxycytidine triphosphate	IMP	Inosine monophosphate
DGDP	Deoxyguanosine diphosphate	IPPP	Isopentyl pyrophosphate
DGMP	2-Deoxy-guanosine-5-phosphate	IPPMAL	3-Isopropylmalate
DGR	D-1,2-Diacylglycerol	ISOVCOA	Isovaleryl-CoA
DGTP	Deoxyguanosine triphosphate	LA	Lipoamide
DHD	7,8-Dihydropteroate	LAC	Lactate
DHF	Dihydrofolate	LEU	Leucine
DHMVA	2,3-Dihydroxy-3-methyl-valerate	LPS	Lipposaccharide
DHP	Dihydroneopterin	LYS	<i>l</i> -Lysine
DHSK	Dehydroshikimate	MAL	Malate
DHVAL	α,β-Dihydroxy-isovalerate	MALACP	Malonyl-ACP
DIMGP	d-Erythroimidazoleglycerol-phosphate	MALCOA	Malonyl-CoA
DOROA	Dihydroorotic acid	MCCOA	3-Methyl crotonyl-CoA
DQT	3-Dehydroquinate	MDAP	meso-Diaminopimelate
DSAM	Decarboxylated SAM	MET	Methionine
DUDP	Deoxyuridine diphosphate	METHF	5,10-Methenyl tetrahydrofolate
DUMP	Deoxyuridine monophosphate	METTHF	5,10-Methylene tetrahydrofolate
DUTP	Deoxyuridine triphosphate	MTHF	5-Methyl tetrahydrofolate
E4P	Erythrose 4-phosphate	NAARON	N - α -Acetyl ornithine
EFF	Efficiency	NADH	Nicotinamide adenine dinucleotide
ETHANOL	Ethanol	NADPH	Nicotinamide adenine dinucleotide phosphate
F16P	Fructose 1,6-diphosphate	NAGLU	N-Acetyl glutamate
F6P	Fructose 6-phosphate	NAGLUYP	N-Acetyl glutamyl-phosphate
FADH	Flavin adenine dinucleotide	NAGLUSAL	N-Acetyl glutamate semialdehyde
FGAM	5-Phosphoribosyl- <i>N</i> -formylgycineamidine	NH3	Ammonia
FGAR	5-Phosphoribosyl- <i>N</i> -formylglycineamide	NICNT	Nicotinate nucleotide
FMN	Riboflavin 5'-phosphate	NPRAN	N-5-Phosphoribosyl-antranilate
FORMATE	Formate	NS26DP	N-Succinyl-1,1-2,6-diaminopimelate
FTHF	10-Formyl-tetrahydrofolate	NS2A6O	N-Succinyl-2-amino-6-ketopimelate
FUM	Fumarate	02	Oxygen
G1P	Glucose 1-phosphate	OA	Oxaloacetate
G6P	Glucose 6-phosphate	OBUT	Oxobutyrate
GA6P	Glucosamine-6-phosphate	OICAP	2-Oxoisocaproate
GAR	5-Phosphoribosyl glycineamide	OIVAL	Oxoisovalerate
GDP	Guanosine diphosphate	OMP	Orotidylate
GGPP	Geranylgeranyl pyrophosphate	OMVAL	Oxomethylvalerate
GL	Glycerol	ORN	Ornithine
GL3P	Glycoden 3-phosphate	OROA	Orotic acid
GLAL	D-Glyceraldehyde	OSLHSER	o-Succinyl-L-homoserine
GLC	Glucose	PA	Phosphatidyl acid
GLN	Glutamine	PAP	Adenosine-3,5-diphosphate
GLUCSAL	Glutamate	PAPS	3-Phosphoadenylyl sulfate
GLUGSAL	L-Glutamate γ-semialdehyde	PE	Phosphatidyl ethanolamine

Abbreviation	Compound
PEP	Phosphoenolpyruvate
PEPTIDO	Peptidoglycan
PG	Phosphatidyl glycerol
PGP	1-1-Phosphatidyl-glycerol-phosphate
PHE	Phenylalanine
PHEN	Prephenate
PHP	3-Phosphohydroxypyruvate
PHPYR	Phenyl pyruvate
PHSER	o-Phospho-l-homoserine
PI	Phosphate (inorganic)
PIP26DX	δ-Pieperidine-2,6-dicarboxylate
POLYP PORPH	Polyphosphate
PPI	Porphyrinogen Pyrophyrinogen
PRAM	Pyrophosphate 5-Phospho-β-D-ribosyl amine
PRBAMP	Phosphoribosyl-AMP
PRBATP	Phosphoribosyl-ATP
PRFICA	5-Phosphoribosyl-formamido-4-imidazole carboxamido
PRFP	Phosphoribosyl-formimino-AICAR-phosphate
PRLP	Phosphoribulosyl-formimino-AICAR-phosphate
PRO	Proline
PRPP	Phosphoribosyl pyrophosphate
PRSCAIM	5-Phosphoribosy-14- <i>N</i> -succinocarboxyamide-5-amino
PS	Phosphatidyl serine
PTRSC	Putrescine
PYR	Pyruvate
Q	Ubiquinone
QH2	Ubiquinol
QNL	Quinolate
R5P	Ribose 5-phosphate
RCAIM	5-p-Ribosyl-4-carboxy-5-aminoimidazole
RIBOFLAVIN	Riflavin
RL5P	D-Ribulose 5-phosphate
S7P	D-Sedoheptulose-7-P
SAH SAM	s-Adenosyl homocystine s-Adenosyl methionine
SER	Serine
SME	Shikimate
SME5P	Shikimate-5-phosphate
SPRMD	Spermidine
SUCC	Succinate
SUCCOA	Succinyl-CoA
T3P1	Glyceraldehyde-3-phosphate
T3P2	Dihydroxyacetone phosphate
TDP	Thymidine-5-diphosphate
THF	Tetrahydrofolate
THR	Threonine
TMGCOA	trans-3-Methyl-glutaconyl-CoA
TMP	Thymidine-5-monophosphate
TRP	Tryptophan
TTP	Thymidine-5-triphosphate
TYR	Tyrosine
UDP	Uridine diphosphate
UDPAM	UDP-Acetylmuramate
UDPGA	UDP-N-Acetylglucosamine
UDPGAL	UDP N-Acetylgalactosamine
UDPGC	UDP N-Acetylglucosamine-enolpyruvate
UDPGLN	UDP N-Actylglucosamine
UMP	Uridine monophosphate
UREA UTP	Urea Uridine triphosphate
VAL	Valine
VAL	Vululose 5 mhosmbets

Xylulose-5-phosphate

Xantosine monophosphate

X5P

XMP

We acknowledge the National Science Foundation (BES-9502495) for funding.

References

- Andersen, K. B., von Meyenburg, K. v. 1980. Are growth rates of *Escherichia coli* in batch cultures limited by respiration? J. Bacteriol. 144: 114–123.
- Bacher, A., Eberhardt, S., Richter, G. 1996. Biosynthesis of riboflavin, pp. 657–664. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Ballesta, J. P. G., Schaechter, M. 1971. Effect of shift-down and growth inhibition on phospholipid metabolism of *Escherichia coli*. J. Bacteriol. 107: 251–258.
- Beale, S. I. 1996. Biosynthesis of hemes, pp. 731–748. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D.C.
- Blanch, H. W., Clark, D. S. 1996. Biochemical engineering. Marcel Dekker, New York.
- Bock, A., Sawers, G. 1996. Fermentation, pp. 262–282. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Bremer, H., Dennis, P. P. 1987. Modulation of chemical composition and other parameters of the cell by growth rate, pp. 1527–1542. In: F. C. Neidhardt (ed.), Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Bremer, H., Dennis, P. P. 1996. Modulation of chemical composition and other parameters of the cell by growth rate, pp. 1553–1569. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Bright–Gaertner, E., Proulx, P. 1972. Metabolism of phosphoglycerides in *Escherichia coli* during growth at 37° and during a cold-induced lag phase. Biochim. Biophys. Acta **270**: 40–49.
- Brunschede, H., Dove, T. L., Bremer, H. 1977. Establishment of exponential growth after a nutritional shift-up in *Escherichia coli* b/r: Accumulation of deoxyribonucleic acid, ribonucleic acid, and protein. J. Bacteriol. **129**: 1020–1033.
- Characklis, W. G., Marshall, K. C. (eds.). 1989. Biofilms. Wiley series in ecological and applied microbiology. Wiley, New York.
- Cronan, J. E., LaPorte, D. 1996. Tricarboxylic acid cycle and glyoxylate bypass, pp. 206–216. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmo-nella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Cronan, J. E., Rock, C. O. 1996. Biosynthesis of membrane lipids, pp. 612–636. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Donachie, W. D., Robinson, A. C. 1987. Cell division: Parameter values and the process, pp. 1578–1593. In: F. C. Neidhardt (ed.), *Escherichia coli* and *Salmonella typhimurium*: Cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Eckert, R. E., Schaechter, M. 1965. Bacterial growth under conditions of limited nutrition. Ann. NY Acad. Sci. 102: 549–563.
- Fraenkel, D. G. 1996. Glycolysis, pp. 189–198. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Esch-

- erichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D.C.
- Gennis, R. B., Stewart, V. 1996. Respiration, pp. 217–261. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Glansdorf, N. 1996. Biosynthesis of arginine and polyamines, pp. 408–433.
 In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Green, J. M., Nichols, B. P., Matthews, R. 1996. Folate biosynthesis, reduction, and polyglutamylation, pp. 665–673. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D.C.
- Greene, R. C. 1996. Biosynthesis of methionine, pp. 542–560. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Harold, F. M., Maloney, P. C. 1996. Energy transduction by ion currents, pp. 283–306. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Harrison, D. E. F., Loveless, J. E. 1971. The effect of growth conditions on respiratory activity and growth efficiency in facultative anaerobes grown in chemostat culture. J. Gen. Microbiol. 68: 35–43.
- Hempfling, W. P., Mainzer, S. E. 1975. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of *Escherichia coli* in continuous culture. J. Bacteriol. 123: 1076–1087.
- Herbert, D., Kornberg, H. L. 1976. Glucose transport as rate-limiting step in the growth of *Escherichia coli* on glucose. Biochem. J. 156: 477–480.
- Holme, T. 1957. Continuous culture studies on glycogen synthesis in *Escherichia coli* B. Acta Chem. Scand. 11: 763–775.
- IBM. 1992. IBM: Optimization subroutine library, guide and reference, release 2. IBM Corp., White Plains, NY.
- Jackowski, S. 1996. Biosynthesis of pantothenic acid and coenzyme A, pp. 687–694. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Kadner, R. J. 1996. Cytoplasmic membrane, pp. 58–87. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Kanemasa, Y., Akamatsu, Y., Nojima, S. 1967. Composition and turnover of the phospholipids in *Escherichia coli*. Biochim. Biophys. Acta 144: 382–390.
- Karp, P. D., Riley, M., Paley, S. M., Pelligrinitoole, A. 1996. Ecocyc—An encyclopedia of *Escherichia coli* genes and metabolism. Nucleic Acids Res. 24: 32–39.
- Kessler, D., Knappe, J. 1996. Anaerobic dissimilation of pyruvate, pp. 199–205. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Kredich, N. M. 1996. Biosynthesis of cysteine, pp. 514–527. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Leisinger, T. 1996. Biosynthesis of proline, pp. 434–441. In: F. C.

- Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Lowry, O. H., Carter, J., Ward, J. B., Glaser, L. 1971. The effect of carbon and nitrogen sources on the level of metabolic intermediates in *Escherichia coli*. J. Biol. Chem. 246: 6511–6521.
- Luenberger, D. G. 1984. Linear and nonlinear programming, 2nd edition. Addison-Wesley, Reading, MA.
- Majewski, R. A., Domach, M. M. 1990. Simple constrained-optimization view of acetate overflow in *E. coli*. Biotechnol. Bioeng. 35: 732–738.
- Maloney, P. C. 1987. Coupling to an energized membrane: Role of ion-motive gradients in the transduction of metabolic energy. In: F. C. Neidhardt (ed.), *Escherichia coli* and *Salmonella typhimurium:* Cellular and molecular biology. ASM, Washington, D.C.
- Marr, A. G. 1991. Growth rate of *Escherichia coli*. Microbiol. Rev. O: 316–333.
- Matthews, R. 1996. One-carbon metabolism, pp. 600–611. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Mavis, R. D., Vagelos, P. R. 1972. The effect of phospholipid fatty acid composition on membranous enzymes in *Escherichia coli*. J. Biol. Chem. 247: 652–659.
- Meganathan, R. 1996. Biosynthesis of the isoprenoid quinones menaquinone (vitamin K2) and ubiquinone (coenzyme Q). In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D.C.
- Michal, G. 1993. Biochemical pathways, 3rd edition. Boehringer Mannheim GmbH Biochemica, Place.
- Neidhardt, F. C. (ed.). 1987. Chemical composition of Escherichia coli. In: F. C. Neidhardt (ed.), Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Neidhardt, F. C., Ingraham, J. L., Schaechter, M. 1990. Physiology of the bacterial cell. Sinauer Associates, Sunderland, MA.
- Neuhard, J., Klein, R. A. 1996. Biosynthesis and conversions of pyrimidines, pp. 580–599. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Nimmo, H. G. 1987. The tricarboxylic acid cycle and anaplerotic reactions, pp. 156–167. In: F. C. Neidhardt (ed.), *Escherichia coli* and *Salmonella typhimurium*: Cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Nissen, T. L., Schulze, U., Nielsen, J., Villadsen, J. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of *Saccharomyces cerevisiae*. Microbiology 143: 203–218.
- Papoutsakis, E. T. Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 26: 174–187.
- Patte, J.-C. 1996. Biosynthesis of threonine and lysine, pp. 528–541. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Penfound, T., Foster, J. W. 1996. Biosynthesis and recycling of NAD, pp. 721–730. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. B 163: 224–231.
- Pirt, S. J. 1982. Maintenance energy: A general model for energy-limited and energy-sufficient growth. Arch. Microbiol. 133: 300–302.
- Pittard, A. J. 1996. Biosynthesis of aromatic amino acids, pp. 458–484. In:

- F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Postma, P. W., Lengeler, J. W., Jacobson, G. R. 1996. Phosphoenolpyruvate:carbohydrate phosphotransferase systems, pp. 1149–1174. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Um20barger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Preiss, J. 1996. Regulation of glycogen biosynthesis, pp. 1015–1024. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Raetz, C. R. H. 1996. Bacterial lipopolysaccharides: A remarkable family of bioactive macroamphiphiles, pp. 1035–1063. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D.C.
- Reitzer, L. J. 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine, pp. 391–407. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Savinell, J. M., Lee, G. M., Palsson, B. O. 1989. On the orders of magnitude of epigenic dynamics and monoclonal antibody production. Bioprocess Eng. 4: 231–234.
- Savinell, J. M., Palsson, B. O. 1992a. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154: 421–454.
- Savinell, J. M., Palsson, B. O. 1992b. Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154: 455–473.
- Schulze, K. L., Lipe, R. S. 1964. Relationship between substrate concentration, growth rate, and respiration rate of *Escherichia coli* in continuous culture. Arch. Mikrobiol. 48: 1–20.
- Shehata, T. E., Marr, A. G. 1971. Effect of nutrient concentration on the growth of *Escherichia coli*. J. Bacteriol. 107: 201–216.
- Silver, S. 1996. Transport of inorganic cations, pp. 1091–1102. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Smith, M. W., Neidhardt, F. C. 1983. Protein induced by anaerobiosis in *Escherichia coli*. J. Bacteriol. **154**: 336–343.
- Stauffer, G. V. 1996. Biosynthesis of serine, glycine, and one-carbon units, pp. 506–513. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Tempest, D. W., Neijssel, O. M. 1987. Growth yield and energy distribution, pp. 797–805. In: F. C. Neidhardt (ed.), Escherichia coli and Sal-

- monella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Tsai, S. P., Lee, Y. H., Networks, M. 1988. Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data. Biotechnol. Bioeng. 32: 713–715.
- Umbarger, H. E. 1996. Biosynthesis of the branched-chain amino acids, pp. 442–457. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Vallino, J. J., Stephanopoulos, G. N. 1993. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633–646.
- van Gulik, W. M., Heijnen, J. J. 1995. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48: 681–698.
- Varma, A., Boesch, B. W., Palsson, B. O. 1993. Biochemical production capabilities of *Escherichia coli*. Biotechnol. Bioeng. 42: 59–73.
- Varma, A., Palsson, B. O. 1993. Metabolic capabilities of *Escherichia coli*.2. Optimal growth patterns. J. Theor. Biol. 165: 503–522.
- Varma, A., Palsson, B. O. 1994a. Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technology 12: 994–998.
- Varma, A., Palsson, B. O. 1994b. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60: 3724–3731.
- Varma, A., Palsson, B. O. 1995. Parametric sensitivity of stoichiometric flux balance models applied to wild-type *Escherichia coli* metabolism. Biotechnol. Bioeng. 45: 69–79.
- Walsh, K., Koshland, D. E. 1985a. Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc. Natl. Acad. Sci. USA 82: 3577–3581.
- Walsh, K., Koshland, D. E. 1985b. Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J. Biol. Chem. 260: 8430–8437.
- Wanner, B. L. 1996. Phosphorus assimilation and control of the phosphate regulon, pp. 1357–1381. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- White, R. H. 1996. Biosynthesis of isoprenoids in bacteria, pp. 637–641.
 In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Winkler, M. E. 1996. Biosynthesis of histidine, pp. 485–505. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.
- Zalkin, H., Nygaard, P. 1996. Biosynthesis of purine nucleotides, pp. 561–579. In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), *Escherichia coli* and *Salmonella*. Cellular and molecular biology. ASM Press, Washington, D.C.