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We describe a computational approach for ®nding genes that are func-
tionally related but do not possess any noticeable sequence similarity.
Our method, which we call SNAP (similarity-neighborhood approach),
reveals the conservation of gene order on bacterial chromosomes based
on both cross-genome comparison and context information. The novel
feature of this method is that it does not rely on detection of conserved
colinear gene strings. Instead, we introduce the notion of a similarity-
neighborhood graph (SN-graph), which is constructed from the chains of
similarity and neighborhood relationships between orthologous genes in
different genomes and adjacent genes in the same genome, respectively.
An SN-cycle is de®ned as a closed path on the SN-graph and is postu-
lated to preferentially join functionally related gene products that partici-
pate in the same biochemical or regulatory process. We demonstrate the
substantial non-randomness and functional signi®cance of SN-cycles
derived from real genome data and estimate the prediction accuracy of
SNAP in assigning broad function to uncharacterized proteins. Examples
of practical application of SNAP for improving the quality of genome
annotation are described.
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Introduction

Computer-assisted functional assignment of
gene products traditionally involves identifying a
signi®cant resemblance to an experimentally
characterized protein or sequence motif. Due to the
constant improvement of the sequence comparison
techniques, reliable recognition of extremely dis-
tant relationships between proteins has become
possible. At the same time, further progress in this
direction is becoming increasingly dif®cult, follow-
ing the rule of diminishing returns: improvements
of ever smaller signi®cance require ever growing
effort and sophistication. Consequently, the quest
to develop complementary, similarity-free compu-
tational approaches to elucidate gene function has
been triggered. For example, methods based on the
linguistic analysis of textual sequence annotation
ing author:

rity-neighbourhood
hood; S-relationship,
onship, genes related
, genes related by
and scienti®c literature1 and correlating protein
amino acid composition with enzyme nomencla-
ture have been explored.2

Comparative genomics shows great promise in
this respect. Successful attempts have been made
to correlate gene properties based on their coordi-
nated occurrence in different genomes, similarity
of the mRNA expression patterns, and patterns of
domain fusion.3,4 The availability of complete gen-
ome sequences has also made it possible to study
the properties of gene products in reference to
their location on the chromosome. In particular,
much attention has been paid to the important fea-
ture of bacterial genomes: the presence of operons,
or groups of genes that are transcribed as a unit
and typically code for proteins involved in the
same biochemical process. For example, over 2500
operons are presumed to exist in Escherichia coli,
with roughly a quarter of them containing two or
more genes.5 The non-random proximity of genes
involved in operons represents a speci®c comp-
lementary information signal not recognizable by
sequence comparison.

Attempts to utilize gene order for improving
genome annotation were quickly undertaken fol-
lowing publication of the ®rst complete genomic
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Figure 1. Finding genes functionally coupled with the gene a residing in the genome A. Colored arrows represent
individual genes and their direction. Straight black arrows represent S-relationships between orthologs in different
genomes, while round black arrows represent N-relationships between genes in the same genome. Only one neighbor
of every gene in each direction is considered. The analysis starts with ®nding neigbours of gene a, genes bA and gA,

in the genome A. Then their orthologs on other genomes are identi®ed, and so on. As a result, a chain of alternating
similarity and neighborhood-relationships, called an SN-graph, is constructed. In this example, the SN-graph has a
closed path aA,gA,gB,dB,dC,oC,oB,eB,eC,aC,aA, or SN-cycle, indicating that at least some part of the constituent genes
may be functionally related. Continuous black arrows correspond to the closed path while the rest of the SN-graph is
shown in broken arrows. Genes not participating in the closed path are shown in grey.
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sequences, but the initial enthusiasm was dissi-
pated by the ®nding that gene order is, in general,
poorly conserved among phylogenetically distant
species.6 ± 8 Hence, we are confronted with two
phenomena: on the one hand, a vast number of
genes from individual genomes form well-de®ned
gene clusters; on the other hand, the conservation
of these gene clusters between distant species is
quite poor. However, while there is no long-range
colinearity between functionally related genes in
bacterial genomes, short conserved strings of
genes, often con®ned to just two elements, appear
to be relatively widespread.9,10 This observation
has recently been exploited to create a similarity-
free algorithm for gene function prediction.11,12 If a
pair of genes, A and B, is spatially conserved
across many or all completely sequenced genomes,
the chances are that they belong to the same gene
cluster, that their functions are related, that they
may physically interact with one another,6,13 and
that they are possibly co-regulated. Thus, if the
function of the product B is not known, sustained
spatial proximity to gene A of known function
may help to draw conclusions about its cellular
role, even if no similarity to known proteins could
be detected. Moreover, even if the function of gene
A is not known, knowledge about the adjacency of
A and B may prove useful, e.g. in large-scale func-
tional analysis strategies and for ®nding drug
targets.13 This approach was dubbed ``guilt-by-
association'' because of its obvious relation to com-
mon investigative practices: persons often seen in
the company of known criminals may become sus-
pects themselves. Can we go further in applying
such detective methods? What if a middleman is
involved?
In the work of Overbeek et al.12 functional coup-
ling of genes on the chromosome was deduced
based on short-range colinearity between genes.
The goal of this work was to uncover functional
coupling between co-regulated proteins in prokar-
yotic genomes using the conservation of gene
order beyond mere colinear gene clusters and to
detect loosely coupled genes, not necessarily resid-
ing in adjacent chromosomal locations. This is
achieved by identifying orthologs of a given gene
in other genomes, considering their neighbors,
®nding the orthologs of these neighbors, and so
on. Continuing the underworld analogy, this
would be equivalent to linking two ma®a bosses
who were never seen together through a chain of
their interacting subordinates. We show that the
chains of alternating similarity and neighborhood
relationships between genes in multiple genomes
are strongly non-random and very informative for
annotating functionally uncharacterized genes.

Following the established bioinformatics tra-
dition, we tried very hard to invent a conspicuous
acronym to name our technique. For the lack of a
better idea, we dub it SNAP, for similarity-neigh-
borhood approach.

Main ideas and definitions

Genes ful®lling the same function in different
organisms (orthologs), or similar but distinct func-
tions in the same organism (paralogs) are expected
to possess a certain degree of sequence similarity
due to the evolutionary conservation of their pri-
mary structure. By contrast, functionally related
genes are essentially different genes that are
involved, for example, in the same metabolic or
signaling pathway. Such genes are normally not
similar; hence, their relatedness is not detectable by
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sequence comparison. Instead, functionally related
genes often form clusters on the chromosome;14

their relatedness may be manifested by spatial
proximity rather than structural resemblance.
Throughout this text, we will use the terms
S-relationship, N-relationship, and SN-relationship
to describe the cases where genes are related by
similarity, neighborhood, or a mixture thereof,
respectively.

In this work, we attempt to exploit the obser-
vation that neighboring genes on bacterial chromo-
somes tend to be functionally related, even if there
is no evidence that their positional preference with
respect to each other is conserved across many
different genomes. Potentially, any random pair of
adjacent genes could be functionally coupled. It is
evident, of course, that many hundreds and even
thousands of genes encoded in complete bacterial
genomes fall into hundreds of different functional
categories, making the joint occurrence of two
functionally related genes a rather unlikely event.15

We need to be able to distinguish random pairs of
physically proximate genes from meaningful ones,
without relying, in general, on the conservation of
such pairs across multiple genomes.

Before we provide a formal description of our
algorithm (see Materials and Methods), we start
with a simple illustration. Let us ®rst consider a
group of ®ve genes involved in a certain biochemi-
cal process, and compare this group as a whole
with functionally related groups in other genomes.
In the case of a perfectly conserved gene cluster,
we will observe a string of genes aA,bA,gA,oA,eA in
the genome A, aB,bB,gB,oB,eB in the genome B,
aC,bC,gC,oC,eC in the genome C, and so on, such
that the genes from different genomes denoted
with the same Greek letter are S-related, and the
genes from the same genome are N-related. In a
more complex, and more realistic case, many of the
inter-genome S-relationships may not be preserved
due to physiological differences between the
species involved, or simply because the similarity
is not detectable with current sequence comparison
tools. Likewise, and even more probably, the N-
relationships within each genome may be dis-
rupted as a result of gene shuf¯ing in the course of
evolution. Therefore, the association between the
different instances of this particular gene cluster in
different genomes will be expressed as an irregular
mixture of S and N-relationships.

Let us consider a hypothetical example, depicted
in Figure 1, and focus on the chain of SN-relation-
ships originating from gene a in genome A. This
gene is N-related to the genes bA and gA. Gene gA

is S-related to gB, the latter is N-related to dB, and
so on. The complete system of such SN-relation-
ships, subject to certain limitations described
below, forms an SN-graph. SN-paths on the graph
are made up of alternating S and N-relationships.
The former are derived using selective sequence
comparison tools, such as BLAST,16 and are thus
extremely signi®cant. By contrast, the latter are
overwhelmingly random. For this reason, the
majority of the SN-paths has no diagnostic value.
However, intermixed with a large number of ``false
positives'' among N-relationships, i.e. pairs of
totally unrelated genes, are a number of N-related
genes that are actually functionally coupled. We
put forward a hypothesis that such meaningful
N-relationships are likely to occur in closed SN-
paths, which we will call SN-cycles. In Figure 1,
the longest SN-cycle is represented by the path
aA,gA,gB,dB,dC,oC,oB,eB,eC,aC,aA. The primary intui-
tion here is that the N-relationships resulting from
non-random associations between genes will have
a statistical tendency to throw a bridge between
pairs of S-related proteins, and ultimately help join
proteins that belong to the same metabolic path-
way, resulting in a closed path on the graph. Our
principal approach in this work is to exploit simul-
taneously the two possible types of relatedness
between genes (S and N-relationships) in order to
establish functional links undetectable by either
type of relationship alone.

Results and Discussion

Formal properties of SN-cycles

We begin with asking two questions: (i) do non-
trivial SN-cycles (i.e. those not involving colinear
gene clusters) exist; and (ii) if they exist, what is
the chance that they occur at random. To answer
the ®rst question, it is suf®cient to provide an
example. Figure 2 shows a closed system of SN-
relationships involving some of the genes respon-
sible for lysine biosynthesis in ®ve prokaryotes.
There are three adjoining SN-cycles originating at
the E. coli gene coding for dihydrodipicolinate
reductase. The detailed discussion of this example
from the functional point of view will follow later.

In order to answer the second question, we have
studied the behavior of SN-graphs and their
dependence on various analysis parameters using
a set of 12 completely sequenced genomes from
phylogenetically distant species (see Materials and
Methods). Figure 3(a) shows the dependence of the
number of SN-cycles identi®ed from the number of
genomes used in the analysis. The graph makes
immediately obvious the value of a large number
of sequenced genomes in comparative genomics:
there is a boost in the number of SN-cycles found
as the number of genomes approaches ten. This is
in agreement with the results of Overbeek et al.,
who noted that in order to detect functional coup-
ling for a given functional subsystem, at least ten
genomes are needed.12

The same experiment was performed with our
set of 12 genomes after randomly shuf¯ing the
gene order within each genome, which effectively
leads to destroying meaningful N-relationships
while keeping S-relationships intact. The difference
in the occurrence of SN-cycles in real and shuf¯ed
genomes quickly grows with the number of gen-
omes and becomes especially pronounced when
more than ten genomes are considered. In the com-



Figure 2. (legend opposite).
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Figure 2. SNAP analysis of the E. coli gene g1786214 coding for dihydrodipicolinate reductase. A part of the SN-
system originating from the Chlanydla trachomatis gene gi_3328787 (which is orthologous to the E. coli gene) is shown.
For illustration purposes, only six prokaryotic genomes are considered, numbered from 1 to 6. (a). A representation
of the gene location and their S and N- relationships. The total number of genes in each genome is shown in parenth-
eses. Sequential numbers of genes, counting from the 50 to the 30 end of the genome are indicated. Additionally, each
gene is colored and labeled with a Greek letter according to its function: a (red), dihydrodipicolinate reductase (EC
1.3.1.26); b (brown), aspartokinase (EC 2.7.2.4); g (cyan), aspartate-semialdehyde dehydrogenase (1.2.1.11); d (yellow),
dihydrodipicolinate synthase (EC 4.2.1.52); e (green), homoserine dehydrogenase (EC 1.1.1.3); f (lilac), diaminopime-
late decarboxylase (EC 4.1.1.20). Three adjoining SN-cycles are present: (i) g2

371 g2
369 g3

3709 g3
3708 g4

1496 g4
1493;(ii) g2

371 g2
369

g3
3709 g3

3708 g5
1185 g5

1184 g3
1294 g3

1293 g4
1490 g4

1493; and (iii) g2
371 g2

369 g3
3709 g3

3708 g3
3708 g6

2901 g6
2900 g4

1494 g4
1493. Incidentally, a simple

colinear gene cluster involving the spatially conserved pair of genes b and g in T. maritima and Synechocystis sp. is
present; the extra S-relationship between the genes of the type g is shown as a broken line. (b) An SN-graph corre-
sponding to the system shown in (a). The shadowed part of the graph stems from the conserved pair of adjacent
genes that have sequential numbers 1494 and 1496 in the genome of T. maritima and number 2900 and 2901 in the
genome of Synechosistis sp. (c) A part of the KEGG metabolic map involving the six genes predicted to be functionally
coupled. Enzymes (highlighted in the same colors as used in (a)) encoded by the genes a, b, g, d and e catalyze sub-
sequent reactions in the lysine biosynthesis pathway, while the reaction catalyzed by the enzyme f is separated from
the nearest reaction of the ®rst group by two other metabolic steps.
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plete set of 12 genomes with real gene order,
33,000 SN-cycles were found, as opposed to 3500
SN-cycles in shuf¯ed genomes. It should also be
noted that at greater evolutionary distances
between species, the share of non-random SN-
cycles increases. We thus estimate that with a suf®-
ciently large number of evolutionary distant gen-
omes taken into account, approximately 90 % of
SN-cycles are non-random. Moreover, as seen in
Figure 3(b), the increase in the number of SN-
cycles is almost exclusively caused by long (more
than ten nodes) SN-cycles. Due to the virtual dis-
appearance of long SN-cycles after shuf¯ing, we
are compelled to conclude that the majority of all
such cycles re¯ect conserved spatial association
between genes, although certain parts of these
cycles may still be random.

As expected, detection of SN-cycles is strongly
in¯uenced by the choice of the BLAST alignment
parameters (Figure 3(c) and (d)); their number
grows quickly as the BLAST parameters are chan-
ged from very stringent (E-values close to 0, cover-
age close to 100 %) to entirely permissive (any
E-value, any coverage). However, even with the
most permissive parameters, the number of
SN-cycles identi®ed in real, unshuf¯ed genomes is
nearly an order of magnitude higher than in the
genomes with random gene order. Since the



Figure 3. Comparison of the global properties of SN-cycles in real (squares) and shuf¯ed (triangles) genomes.
Dependence of the number of SN-cycles detected on (a) the number of genomes considered (in order to make compu-
tations feasible, only selected data points were computed), (b) cycle length, (c) BLAST cutoff E-value, and (d) BLAST
alignment coverage is shown. The default parameters, unless explicitly speci®ed are: BLAST cutoff E-value, 0.0001;
BLAST coverage, 0.4; number of genomes, 12.
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S-relationships are not in¯uenced by gene order
shuf¯ing, the difference observed is solely due to
the strong functional coupling of adjacent genes in
the former and the virtual disappearance of the
N-relationships in the latter.

Functional content of SN-cycles

Now that we have formally established the over-
whelming non-randomness of long SN-cycles and
their frequent occurrence, it is time to examine
their functional content. The central issue in acces-
sing the performance of our method is the granu-
larity of the functional assignments. Similarity-free
approaches are necessarily less speci®c than
methods based on protein sequence and structure
comparison. While the latter are often capable of
predicting precise speci®city of a certain enzyme,
the former are intended to attribute proteins to
broad functional classes or predict their involve-
ment in the same physiological processes or cellu-
lar structures.

Let us consider again the example shown in
Figure 2. The system of three adjoining SN-cycles
links six different enzymes participating in the
lysine biosynthesis pathway (Table 1). As seen in
Figure 2(c), ®ve of these proteins (a,b,g,d and e)
catalyze subsequent reactions, while the reaction
catalyzed by the enzyme f is separated from the
nearest reaction of the ®rst group by two interven-
ing steps, corresponding to a metabolic distance
D � 3. Assuming normalization coef®cient lp � 1,
the pathway coef®cient (see Materials and
Methods) will be equal Kp � 1(5/6) � 0.83 for
Dt � 1, and Kp � 1 for Dt 5 3. Further, all six pro-
teins belong to the same functional role category
01.01.01 (amino acid biosynthesis), which means
that the functional category coef®cient in this case
will be Kf � 1(6/6) � 1 (again, assuming lf � 1).
Thus, both coef®cients indicate a high degree of
functional coupling between the enzymes con-
sidered. Importantly, none of these three SN-cycles
or their parts constitutes a conserved colinear gene
cluster, although one such cluster is incidentally
present and involves the conserved pair of genes
coding for dihydrodipicolinate synthase and homo-
serine dehydrogenase shared between the Thermo-
toga maritima and Synechocystis sp. genomes.

To assess the global performance of our method,
we have studied the behavior of the Kp measure
on the full set of SN-cycles delineated from 12 gen-
omes. The complete KEGG pathway database17

was treated as a set of separate subgraphs corre-
sponding to the individual biochemical pathways,
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such as lysine biosynthesis or glycolysis. Effec-
tively, by using such an approach we are introdu-
cing additional a priori knowledge about
functionally coupled genes in our measurements.
Using this approach (Figure 4(a)) to estimate Kp

leads to a good separation between real and
shuf¯ed genomes for all values of the maximally
allowed metabolic distance D: the functional con-
tent of realistic SN-cycles appears to be an order of
magnitude higher. Such bias would not have any
in¯uence on Kp if gene groups found by SN-cycles
were random.

Comparison of SN-cycles in real and shuf¯ed
genomes in terms of the pathway coef®cient Kp is
presented in Figure 4(b). Over 30 % of all real SN-
cycles found have Kp values greater than 0.5, in
contrast to only 1 % of random cycles. Even in the
range 0.2 < Kp < 0.5, real SN-cycles have a nearly
®vefold lead over the random ones, and the total
of 81 % of the cycles are in the range 0.2 < Kp < 1.0.
By contrast, the same comparison for the functional
category coef®cient Kf (Figure 4(c)) shows that only
40 % of the real SN-cycles are in the range
0.2 < Kf < 1.0, while 60 % have lower Kf values and
cannot be statistically distinguished from random
cycles. We can thus conclude that the SNAP algor-
ithm is capable of associating gene products
involved in a common biochemical pathway, while
the speci®c functions of individual genes rep-
resented in terms of a cellular role category appear
to be correlated rather weakly.

Estimating the predictive power of SNAP

The following simple considerations provide the
basis for the estimation of the predictive power of
SNAP. Suppose a gene of interest is grouped in an
SN-cycle together with a number of other genes
with known EC numbers and an arbitrary number
of genes without EC numbers assigned. We will
ignore the latter, since they make no contribution
to the automatic annotation of the query gene.
Assuming that at least one gene with a known EC
number is related to the query gene, the prob-
ability of a correct functional coupling prediction
for these particular query gene and SN-cycle is
equal to the pathway coef®cient Kp of the cycle.
However, it may happen that none of the genes in
the SN-cycle is pathway-related to the query
sequence. Thus, the expected probability of a cor-
rect prediction for a given SN-cycle should, on
average, be somewhat lower than its Kp, depen-
dent on the frequency of occurrence of a particular
functional class. For each gene characterized
through SNAP, we calculated Kp of the SN-cycle
used for the prediction and compared the pathway
assignment of the most represented gene group in
the cycle with that of the query gene. Two alterna-
tive conditions for considering a prediction of func-
{ Available online at http://pedant.gsf.de/cgi-bin/
www¯y.pl?Set � Tacidophilum&Page � index
tional coupling to be correct were utilized: (a) best
group condition, when the query gene was found
in the same pathway as the genes of the single
most represented enzyme group in all of the cycles
associated with the query gene; and (b) all groups
condition, when the query gene was found in the
same pathway as the genes of any enzyme group
across all cycles.

The cumulative graph in Figure 5 shows the
dependence of the SNAP best group prediction
accuracy on the minimal allowed Kp coef®cient
based on our data. The average success rate for the
entire set of genes participating in the SN-cycle is
around 45 %. If one considers only SN-cycles with
Kp > 0.4, the prediction accuracy increases to over
75 %. As seen in Figure 4(b), approximately 60 % of
all SN-cycles in real genomes (as opposed to only
7 % in shuf¯ed genomes) have the Kp coef®cient in
this range. Not surprisingly, the percentage of true
positives for the shuf¯ed genomes shown in
Figure 5 remains constant for all values of Kp. Note
that the curve for real SN-cycles in Figure 5 tails
off somewhat at Kp values greater than 0.9. This
happens because many of the SN-cycles with Kp

values equal to exactly 1.0 include only two genes
with known EC numbers, while SN-cycles with Kp

values in the range 0.8-1.0 are typically calculated
on the basis of ®ve to ten genes (data not shown).
The probability of encountering two out of two
genes with the same EC number by chance is high-
er than, for example, to ®nd eight out of ten genes
with the same EC number. In other words, this
curve is not normalized by the number of genes
actually used to calculate Kp.

In Table 2 we present the percentage of true
positive predictions for the individual genomes
studied measured as described above. Only SN-
cycles with Kp greater than 0.4 were considered.
The best group true positive rate for such cycles
varies from 54 % for Mycoplasma pneumoniae to
90 % for Synechosystis sp., while the all groups
numbers lie in the range from 63 % (M. pneumoniae,
Treponema pallidum) to 91 % (Campylobacter jejeuni).
Overall, the all groups true positive rate is some-
what better than the best group simply because the
odds of ®nding genes coupled with the query gene
in many KEGG pathway maps are higher than in
just one map.

Genome annotation with SNAP

The genome of the thermoacidophilic archaeon
Thermoplasma acidophilum containing 1507 pre-
dicted genes has recently been sequenced and sub-
jected to careful manual annotation{ using the
PEDANT software system.28 In particular, each
gene was assigned to one of the following cat-
egories, re¯ecting the current level of knowledge
about its biochemical function: known protein (24
genes); strong similarity to known protein (189
genes); similarity to known protein (495 genes);
weak similarity to known protein (101 genes);
strong similarity to unknown protein (110 genes);

http://pedant.gsf.de/cgi-bin/
http://wwwfly.pl?Set=Tacidophilum&Page=index


Table 1. Genes constituting the SN-cycle shown in Figure 4 (shadowed) and their orthologs
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similarity to unknown protein (265 genes); weak
similarity to unknown protein (85 genes); no simi-
larity (237 genes); and questionable ORF (one
gene).

Here, we focus on the 460 T. acidophilum genes,
or roughly 30 % of the gene complement, that pos-
sess some degree of similarity to uncharacterized
proteins. The number of genes of this type for
which a SNAP prediction can be made depends
critically on the number of genomes considered
and reaches 140, or roughly one-third of this pool,
when all 12 genomes are taken into account. This
number will de®nitely grow as more genomes are
included in the analysis. It appears that with a suf-
®cient number of phylogenetically distant genomes
available, essentially every gene in a genome
under scrutiny will participate in at least one SN-
cycle.

Let us consider the SNAP results for the T. acido-
philum gene Ta0740. This gene, described as con-
served hypothetical protein, has orthologs in a
number of other bacterial genomes, but all of them



Figure 4. Functional content of SN-cycles in real (squares, ®lled bars) and shuf¯ed ( triangles, open bars) genomes.
(a) Dependence of the pathway coef®cient Kp on the maximal allowed metabolic distance D. (b) Relative occurrence
of SN-cycles with different Kp values. (c) Relative occurrence of SN-cycles with different values of the funcat coef®-
cient Kf.
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Figure 5. Dependence of the per-
centage of true positive SNAP
predictions from the minimal
allowed pathway coef®cient Kp for
real (®lled bars) and shuf¯ed (open
bars) genomes.
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are functionally uncharacterized. The SN-cycle
associated with Ta0740 (denoted a, see Figure 6(a))
involves six other types of proteins. Five of them
(b, d, e, z and Z) are enzymes with known EC
numbers, while the sixth protein, denoted g, is
annotated as chloroplast import-associated channel
IAP75. Using our software, we were able to estab-
lish that four of the enzymes, d, e, z and Z, catalyze
a compact group of biochemical reactions in the
phenylalanine, tyrosine, and tryptophan biosyn-
thesis pathway (KEGG map 00400, see Figure 6(b)),
while the enzyme b and the non-enzymatic protein
g are seemingly unrelated to the ®rst four proteins.
Thus, based on these automatically derived KEGG
assignments, the value of Kp for this particular SN-
cycle is 4/5 � 0.8, because four out of ®ve proteins
with known EC numbers belong to the same meta-
bolic pathway. However, by additional manual
analysis we were able to ®nd out that the enzyme
b, involved in purine methabolism (KEGG map
00230), is actually only six reactions away from the
enzyme e. Moreover, even the protein g with no
apparent enzymatic activity may be linked to the
photosynthesis system that is adjacent to the
KEGG map presented in Figure 6(b) (see upper left
corner). Based on the SNAP results, we predict
that Ta0740 is involved in phenylalanine, tyrosine,
and tryptophan biosynthesis.

The second example from T. acidophilum is a
SNAP prediction for the gene Ta0420 (Figure 7). In
the current annotation, this gene is described as
conserved hypothetical protein and has similarity
to hypothetical proteins in Methanobacteirum ther-
moautotrophicum and E. coli. Based on the compari-
son with the eukaryotic genome of Saccharomyces
cerevisiae, functional categories regulation of carbo-
hydrate utilization, other energy generation activi-
ties and carbohydrate utilization were assigned
automatically by the PEDANT system to this pro-
tein; these assignments, however, are based on
quite weak similarities and are thus questionable.
SNAP detected two SN-cycles: a short four-node
cycle composed of the proteins of a and b types,
and a long cycle involving the genes a, b, g, d, e, z
and Z (Figure 7(a)). The ®rst cycle represents the
case of a weakly conserved colinear gene pair: the
genes a and b appear in close proximity in just two
relatively close genomes (M. thermoautotrophicum
and T. acidophilum). Consequently, based on the
annotation of the gene b, we can putatively assign
function to the gene a. Speci®cally, functional cat-
egories automatically assigned to b by PEDANT
do indeed coincide with those assigned to a (see
above) and thus con®rm them (Figure 7(b)).

The long SN-cycle reveals the following: a, b, g
and z were assigned to the functional category
carbohydrate utilization (b, g and z are well-known
enzymes occurring in the glycolysis pathway and
other energy-related pathways), gene Z is a regu-
latory protein of unclear function, gene d is a car-
bonic anhydrase (whose functional role is also not
clear) and gene e is described as NifU-related pro-
tein (Figure 7(b)). NifU protein is involved in the
nitrogen ®xation process in certain soil bacteria
and cyanobacteria. In our example, though, it has
orthologs in Chlamydia pneumoniae and C. jejuni.
The existence of nitrogen ®xation genes in these
host-dependent prokaryotes would be dif®cult to
explain: it is unlikely that such an organism has
the ability to perform energetically expensive
atmospheric nitrogen ®xation in the presence of
already ®xed nitrogen, as in the host environment.
Thus, we conclude that the description assigned to
these proteins based on the weak similarity to the
nitrogen ®xation genes is incorrect.

Based on the SNAP prediction, we can conclude
that the gene Ta0420 is involved in carbohydrate
utilization, possibly as a regulatory protein, which
is in accordance with the weak similarity and coli-
nearity data available for this gene.



Table 2. Percentage of true positives for individual genomes and summarized for all genomes

Percentage of true positives

Genome Best cycle All cycles
Number of genes for which a

prediction was made

A. pernix 78.8 78.8 33
C. jejuni 89.5 91.2 57
C. pneumoniae 84.2 89.5 19
E. coli 72.0 75.2 125
M. pneumoniae 54.5 63.6 11
M. thermoautotrophicum 76.3 76.3 38
M. tuberculosis 85.5 85.5 83
P. abyssi 66.7 76.2 63
Synechocystis sp. 90.3 90.3 62
T. maritima 79.6 79.6 49
T. pallidum 63.6 63.6 11
T. acidophilum 69.0 69.0 58
All genomes 77.8 79.8 609
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Conclusions and Outlook

SNAP is a generalization of the algorithm
described by Overbeek et al.11,12 Our method does
not rely on the conservation of gene order in the
form of colinear gene clusters and detects genes
that are functionally coupled through a chain of
alternating S and N-relationships. The algorithm
takes a protein sequence and a set of annotated
completely sequenced genomes as input and
returns a number of SN-cycles with all vertices
being potentially linked to the query sequence.

The main ®nding that we report here is the wide
occurrence of SN-cycles and their strong non-ran-
domness as compared with genomes in which
gene order was arti®cially shuf¯ed. The fact that
SN-cycles actually re¯ect the conservation of gene
order makes them a useful instrument for de®ning
functional relationships among genes, studying
genome plasticity, and reconstructing evolutionary
events. While the biological background of the SN-
cycles remains unclear at this point, we assume
that they re¯ect functional coupling between clo-
sely co-regulated genes in prokaryotic genomes
and, more generally, the conservation of functional
and regulatory contexts in genomes.18

Further, we sought to quantify the ability of
SNAP to predict broad gene function. Using
assignments of genes to KEGG metabolic maps
and the genome annotation available through the
PEDANT database, we have demonstrated the ten-
dency of SN-cycles to reveal the proximity of func-
tionally coupled genes. In doing so, our
consideration was necessarily limited to the genes
to which EC numbers could be assigned. More-
over, the metabolic pathway and functional cat-
egory assignments that served as the basis for
calculating the Kp and Kf coef®cients were pro-
duced automatically based on sequence similarity
searches and are prone to errors. Thus, while the
anecdotal evidence of functional coupling detection
by SNAP presented throughout this work appears
to be quite convincing, objective assessment of
SNAP performance is very dif®cult and is cur-
rently limited to recovering rough pathway infor-
mation for some of the genes involved. Moreover,
using this approach we are capable of ®nding
putative true positive predictions, but cannot make
any conclusions about negative predictions, i.e.
cases when no prediction could be made. In any
event, it is clear that the reliability of functional
inferences made with SNAP will depend critically
on the quality of the whole body of genome anno-
tation available.

Signi®cantly better performance of SNAP in
terms of the pathway coef®cient Kp as compared
with the functional category coef®cient Kf is not
unexpected and is compatible with the main bulk
of facts available on the functional composition of
gene clusters. Bacterial operons tend to encode
members of distinct protein families required for
subsequent steps in a biochemical or regulatory
pathway. There is also suf®cient evidence that the
conservation of spatial proximity is especially pro-
nounced between the physically interacting gen-
es.8,13 We have thus con®rmed that the concept of
functionally coupled or functionally related genes
used in context-based prediction methods actually
means functionally interacting or jointly acting
genes.

We do not claim to provide the algorithmically
most optimal approach to exploring SN-relation-
ships in genomes. The ®ltering criterion for SN-
graphs that we used, namely the requirement for
SN-paths to be closed, is essentially equivalent to
the requirement of two alternative SN-paths
between two functionally coupled genes to be pre-
sent. A more strict criterion would require that
more than two alternative paths between two
genes exist. We plan to test the performance of
SNAP with the number of gene neighbors in each
direction considered c > 2 (see Materials and
Methods). Increasing c may allow the detection of
long-range patterns in gene order.

The main factor limiting the potential of any
approach exploiting the conservation of gene order
is the massive disruption of gene clusters in dis-
tantly related species and the resulting reduction of
the number of signi®cant N-relationships available.
Another obvious limitation is the possibility of



Figure 6. SNAP analysis of the hypothetical protein Ta0740 from T. acidophilum. (a) SN-cycle associated with
Ta0740 (denoted a). Six other protein types found are: b, phosphoribosylaminoimidazolesuccinocarboxyamide
synthase (EC 6.3.2.6); g, chloroplast import-associated channel IAP75; d, prephenate dehydrogenase (EC 1.3.1.12); e, 2-
dehydro-3-deoxyphosphoheptonate aldolase (EC 4.1.2.15); z, 3-dehydroquinate synthase (EC 4.6.1.3); Z, chorismate
synthase (EC 4.6.1.4). (b) Phenylalanine, tyrosine, and tryptophan biosynthesis pathway as presented in the KEGG
database (map 00400). Enzymes d, e, z, and Z are highlighted in colors corresponding to those in (a).
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Figure 7 (legend shown on page 297)
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non-orthologous gene displacement,19 leading to
termination of SN-cycles due to the absence of
their constituent S-relationships. The results of the
functional coupling prediction are also dependent
on our ability to differentiate orthologs of a certain
gene in other genomes from paralogous genes.
However, even if a homologous protein with a
similar function is recruited instead of the true
functional ortholog, the SN-graph may still be
closed and the corresponding prediction of signi®-
cant value.

An important recent advance is the establishing
of functional association between spatially separ-
ated genes that in other organisms are fused to
form a composite protein.3,4 Gene fusion events
have been shown to be reliable indicators of pro-
tein interaction, but the number of such events is
rather limited (e.g. 64 cases involving 2.8 % of pro-
teins in E. coli, Haemophilus in¯uenzae, and Metha-
noccocus jannaschii, as reported by Enright et al.4). It
will be easy to adapt SNAP to take into account
gene fusion events by rede®ning N-relationships as
those between separate spatially proximate genes,
and those between distinct, non-overlapping
sequence domains of the same protein as outlined
by the structure of BLAST local alignments. SNAP
can also be combined with statistical operon pre-
diction methods20 based on recognition of regulat-
ory DNA signals.

The role and the frequency of occurrence of gene
clusters in eukaryotes is completely open. While
operons seem not to be generally present in higher
organisms, they do play a signi®cant role in some
of them. In the Caenorhabditis elegans genome, for
example, up to 25 % of the genes are organized in
polycistronic transcription units.21 A sizeable num-
ber of functionally interacting eukaryotic genes are
involved in synexpression groups.23 What part of
these genes are physically associated on the
chromosome remains unclear. We intend to study
the applicability of our method to the completely
sequenced eukaryotic genomes that are currently
available.

Based on our tests with the Thermoplasma acido-
philum genome, we estimate that SNAP will prove
instrumental in mapping functional links for a sig-
ni®cant fraction (up to 30 %) of presently uncharac-
terized genes in bacterial genomes. We plan to
launch an effort to re-annotate all completely
sequenced genomes available to date. Systematic
work directed at the detection of functionally inter-
acting genes will have implications for medical



Figure 7. SNAP analysis of the hypothetical protein Ta0420 (a) from T. acidophilum. (a) SN-cycle associated with
Ta0740 (denoted a). (b) Functional categories assigned by PEDANT.
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and environmental research, since many genes
responsible for antibiotic resistance, pathogenesis,
and biodegradation are transferred horizontally
between different species in clusters23 and conse-
quently represent good targets for SNAP. A WWW
server allowing the users to perform a gene func-



Figure 8. A hypothetical chain of
SN-relationships. A part of a
hypothetical SN-graph involving an
SN-cycle. Genes participating and
not participating in the SN-cycle
are shown as ®lled and open cir-
cles, respectively, and are denoted
as gi

k where the superscript stands
for the genome number and the
subscript for the sequential gene
number on the chromosome. Con-
tinuous and broken arrows depict
similarity and neighborhood-
relationships, respectively. The
number of gene neighbors con-
sidered on each side c � 1.
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tion prediction using our method and the under-
lying PEDANT genome database is now under
development.

Materials and Methods

Description of the algorithm

We consider N bacterial genomes Gi (i � 1,N), each
containing Mi genes, gi

k(k � 1, Mi), where k is the sequen-
tial number of the gene on the chromosome. Two genes,
gi

k and gi
k � 1, from the same genome i are N-related if

they ful®l the following conditions: (i) the distance
between the stop codon of gi

k and the start codon of gi
k � 1

is smaller then a certain threshold value d (typically 500
base-pairs.); and (ii) both gi

k and gi
k � 1 have the same

orientation (i.e. they are situated on the same strand; as
demonstrated by Overbeek et al.,12 co-occurence of func-
tionally coupled genes on opposite strands is a very rare
event). We take into account spatial association between
genes that are, at most, c genes away from each other.
Therefore, a genome i can be represented as an
unordered set of up to Mi ÿ 2c gene words,
Wi

q(q � c � 1,Mi ÿ c), each word being an ordered
list of up to 2c + 1 genes:

Wi
c�1�hgi

1 � � � gi
2c�1i;Wi

c�2�hgi
2 � � � gi

2c�2i;Wi
c�3�hgi

3 � � � gi
2c�3i

etc. In other words, each gene word Wi
q contains the

gene gi
q, its c neighbors on the left, and its c neighbors on

the right. A genome will contain exactly Mi ÿ 2c gene
words only if all genes are on the same strand and are
separated by no more than d bases. Since this is never
the case, the actual number of gene words in a genome
will be smaller. For the same reason, many of the gene
words will contain less than 2c � 1 genes. The minimal
number of genes in a gene word is two, since otherwise
no N-relationship in the word can exist. Throughout this
work we used c � 2 in order to make our tests computa-
tionally feasible.

An all-against-all comparison of the genes gi
k, (i � 1,N,

k � 1,Mi) is conducted using the PSI-BLAST algorithm.16

An S-relationship between two genes gi
k and gi

l, residing
on the genomes Gi and Gj, respectively, exists if the
BLAST E-value E(gi

k, gj
l) < e, and the coverage of the

BLAST alignment, de®ned as the fraction of amino acid
residues of the shorter compared protein covered by the
alignment, C(gi

k, gj
l) > a, where e and a are parameters of

the analysis. As an additional restriction, we may require
the BLAST match to be reciprocal, such that E(gi

k, gj
l) < e,

E(gj
l, gi

k) < e and there are no x � 1,Mj, x 6� k and y � 1,Mi,
y 6� l such that E(gj

x, gi
k) < E(gj

l, gi
k) and E(gi

y, gj
l) < E(gi

k, gj
l).

The matrix of all-against-all BLAST matches is made
symmetrical by selecting for each pair of proteins the
best E-value and the best value of coverage C, such that
E(gi

k, gj
l) � E(gj

l, gi
k) �min(E(gi

k, gj
l), E(gj

l, gi
k)) and C(gi

k,
gj

l) � C(gj
l, gi

k) �max(C(gi
k, gj

l), C(gj
l, gi

k)).
We can now represent the chain of SN-relationships

originating from an arbitrary gene gi
k as an SN-graph

involving S and N-relationships in an alternating
fashion, starting either with an S-relationship or an N-
relationship in which gi

k is involved. An example of such
a graph is shown in Figure 8. It is easy to see that the
SN-graph joins gene words that have at least one pair of
S-related genes.

In our implementation, an SN-graph is traversed
using the depth-®rst algorithm and all closed SN-paths,
or SN-cycles, are identi®ed. In Figure 8, an SN-cycle
involves 16 genes shown as ®lled circles, corresponding
to the eight related gene words. A special case of an SN-
cycle is constituted by colinear gene clusters in which the
order of genes is partially or fully conserved across sev-
eral genomes. Such SN-cycles involve words with more
than one pair of S-related genes (Figure 9).

With an increasing number of genomes the number of
nodes in the SN-graph grows very quickly so that ®nd-



Figure 9. A hypothetical SN-graph which involves a
conserved pair of genes in three genomes: genes 552
and 553 in genome 1, genes 600 and 601 in genome 2,
and genes 51 and 52 in genome 3. In this case, the SN-
cycle is equivalent to a colinear gene cluster of the type
described by Overbeek et al.12 The notation as in
Figure 8.
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ing all paths becomes computationally prohibitive. To
demonstrate the feasibility of our approach, without los-
ing the generality, we set an upper limit on the path
length at a certain value, typically 14 nodes.

Measuring the performance of the method

All genes belonging to an SN-cycle are regarded as
functionally coupled. In order to test the validity of this
assertion, we need to measure the performance of the
algorithm on a large number of documented cases of
``true'' functional relatedness. Two different approaches
for de®ning the standard of truth for our calculations
have been explored.

Analysis of reference metabolic pathways

The entire KEGG/PATHWAY database{,17 was pro-
cessed with a sophisticated perl script to extract the
pathway graph in a form suitable for subsequent compu-
ter analysis. Information about links between biological
objects cannot be gleaned easily from the KEGG image
®les representing the pathways. We obtained this infor-
mation indirectly by comparing the list of all biochemical
reactions present in the database with another list that
speci®es both the EC number of a given enzyme and the
compounds it interacts with. Since the names of the com-
pounds in the ®rst and the second list are often inconsist-
ent, we used a sub-string comparison technique to
establish correspondence between them. Further, unspe-
ci®c widely applicable metabolites, such as water, alco-
hol, CO2 etc. were not considered.

The pathway graph is constituted by vertices and
edges corresponding to enzymes and substrates, respect-
ively. Given a set of enzymes represented by their EC
{ Available online at http://www.genome.ad.jp/
kegg/kegg2.html, downloaded from ftp://
kegg.genome.ad.jp

{ Available online at http://mips.gsf.de/proj/yeast/
catalogues/funcat/index.html
numbers E � (E1,E2, . . . ,En), where n is the number of
enzymes in the set, our goal is to ®nd a measure,
0 4 Kp 4 1, to describe their ``concentration'' on the
pathway graph. We call this measure the ``pathway coef-
®cient''. The ideal case of Kp � 1 corresponds to an SN-
cycle joining enzymes that form a compact pathway sub-
graph such that (i) no other nodes except for
(E1,E2, . . . ,En) exist, and (ii) for any nodes Ei and Ej there
exists a path connecting them. The worst case Kp � 0
describes an SN-cycle that joins totally unrelated
enzymes, i.e. there is no path on the pathway graph con-
necting any pair of the enzymes found.

The metabolic distance Dij between two enzymes Ei

and Ej on the pathway graph is de®ned as the minimal
number of reaction stages (edges) connecting these
enzymes (vertices). Given a set of enzymes, we used the
following approach to determine the value of the path-
way coef®cient Kp. Single linkage clustering was applied
to the metabolic distance matrix Dij, i � 1,n, j � 1,n in
order to ®nd the largest cluster of vertices C 2 E subject
to the constraint that Dij < Dt, where Dt is the threshold
metabolic distance. The pathway coef®cient can then be
computed as:

Kp � lp
m

n
�1�

where m is the number of elements in C, and l is a nor-
malization coef®cient de®ned as:

lp � mXm

j�1

qj

�2�

where qj denotes the number of times the EC number
corresponding to the jth element of C occurred in the
entire pathway graph.

Utilization of functional categories

The degree of functional coupling between the genes
involved in SN-cycles was also examined in reference to
the MIPS functional role catalogue developed for the
yeast genome{.24 The catalogue has a hierarchical struc-
ture. Each of the 15 main classes (e.g. metabolism,
energy etc.) contains three to four subclasses, with the
total number of functional categories exceeding 200. Cor-
respondingly, the numeric designator of a functional
class can include up to four numbers. For example, the
yeast gene product YGL237c is attributed to the func-
tional category 04.05.01.04, where the numbers, from left
to right, mean transcription, mRNA transcription,
mRNA synthesis, and transcriptional control. Nearly
4000 yeast genes could be ascribed to at least one func-
tional category based on careful manual analysis of
extrinsic evidence (similarity to known proteins, pre-
sence of indicative sequence patterns) as well as exper-
imental data from the literature. In this work, the MIPS
classi®cation was used for automatic assignment of func-
tional categories to gene products from completely
sequenced genomes based on signi®cant homology to
one or many functionally characterized yeast genes.

The functional category coef®cient for a group of
genes with at least one functional category assigned
F � (F1,F2, . . . ,Fn) was computed as:

Kf � lf
m

n
�3�

http://www.genome.ad.jp/kegg/kegg2.html
http://www.genome.ad.jp/kegg/kegg2.html
http://www.mips.gsf.de/proj/yeast/catalogues/funcat/index.html
http://www.mips.gsf.de/proj/yeast/catalogues/funcat/index.html
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where n is the number of genes in the group, m is the
maximal number of times a functional category f
occurred in F, and lf is a normalization coef®cient:

lf � 1ÿ P�m; f � �4�
In the latter equation P(m,f) denotes the binomial prob-
ability of the functional category f to occur m times in
the group of genes of size n:

P�m; f � � n!

�nÿm�! pm�1ÿ p�nÿm �5�

where p is the general frequency of occurrence of a func-
tional category f.

Implementation and data sources

The main vehicle for the present study was the PED-
ANT genome analysis system.25,26 The PEDANT data-
base{ contains exhaustive functional and structural
annotation of all completely sequenced genomes. In par-
ticular, gene products are automatically assigned to
yeast functional categories24 and enzyme classes17 based
on similarity searches. Out of 35 ®nished genomic
sequences available at the time of writing, we selected 12
genomes from suf®ciently distant species, as assessed
visually based on a maximum likelihood phylogenetic
tree derived from the small-subunit rRNA sequences
using the PHYLIP package (data not shown).27 Namely,
these genomes are: Aeropyrum pernix, C. jejuni, C. pneu-
moniae, E. coli, M. pneumoniae, M. thermoautotrophicum,
Mycobacterium tuberculosis, Pyrococcus abyssi, T. acidophi-
lum, T. maritima, T. pallidum, Synechocystis sp.{. Through-
out this text, gene IDs as available through the PEDANT
database are utilized.

A perl program was written to extract gene positional
information and various other attributes from the PED-
ANT MySQL relational tables, build the SN-graphs,
detect SN-cycles, and study the features of the genes pre-
dicted to be functionally related.
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