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ABSTRACT

Motivation: Mutual information can be used to explore covarying

positions in biological sequences. In the past, it has been

successfully used to infer RNA secondary structure conformations

from multiple sequence alignments. In this study, we show that the

same principles allow the discovery of transcription factor amino

acids that are coevolving with nucleotides in their DNA-binding

targets.

Results: Given an alignment of transcription factor binding domains,

and a separate alignment of their DNA target motifs, we demonstrate

that mutually covarying base-amino acid positions may indicate

possible protein–DNA contacts. Examples explored in this study

include C2H2 zinc finger, homeodomain and bHLH DNA-binding

motif families, where a number of known base-amino acid contacting

positions are identified. Mutual information analyses may aid the

prediction of base-amino acid contacting pairs for particular

transcription factor families, thereby yielding structural insights

from sequence information alone. Such inference of protein–DNA

contacting positions may guide future experimental studies of DNA

recognition.

Contact: shaun.mahony@ccbb.pitt.edu or benos@pitt.edu

1 INTRODUCTION

Transcription factor (TF) proteins recognize their DNA targets

via the formation of a network of specific and non-specific

molecular interactions. TF DNA-binding preferences are

usually modeled using frequency matrices derived from

alignments of known sites. Typically, these position-specific

scoring matrices (PSSMs) assume independence between the

base positions (Stormo, 2000). Structurally related TFs often

share similarities in their DNA-binding motifs. Generalized

binding models or familial binding profiles (FBPs) constitute a

measure of the ‘average’ binding specificity for a family of TFs

(Sandelin and Wasserman, 2004). Structural information and

protein sequence comparisons have been previously used to

cluster TF binding profiles in order to build FBPs (Sandelin

and Wasserman, 2004), and automatic methods have been

recently introduced (Mahony et al., 2007). FBPs allow DNA

pattern discovery algorithms to be biased towards a particular

TF structural class (Mahony et al., 2005). In addition, FBPs

can be used to infer the identity of the TF family for predicted

novel motifs (Mahony et al., 2007; Sandelin and Wasserman,

2004), or to remove degeneracy between related motifs in the

motif repositories (Cartharius et al., 2005).
In this study, we use FBP construction methods to define

alignments of related DNA-binding motifs. Given an alignment

of DNA-binding motifs from a family of related TFs, and

a separate alignment of their corresponding DNA-binding

domain sequences, we demonstrate that mutual information can

be calculated for each pair of positions between the alignments.

Positions of high covariance are shown to correspond to TF

residues that have a critical effect on DNA recognition. We

demonstrate the effectiveness of this method using C2H2 zinc

finger, homeodomain and basic helix-loop-helix (bHLH)

binding domain DNA motifs, where known protein–DNA

contacting positions are recovered using sequence information

alone. The prediction of nucleotide–amino acid contacting

potential from sequence data alone is invaluable in directing

mutagenic experimentation for elucidating mechanisms of TF-

DNA recognition. As demonstrated in this article, mutual

information analyses can certainly play a role in such

predictions.

2 METHODS

2.1 Comparing PSSM columns

A PSSM model of length L is comprised of a set of 4�L weights

(columns). Each column, X, follows a probability distribution,

fpXðbÞgb2fA,C,G,Tg, with the base probability values reflecting the binding

preference of the TF to the corresponding base in this position.

The probability values can be estimated from the observed

base counts, fnXðbÞgb2fA,C,G,Tg. We denote the estimated values

fðXÞ ¼ ffXðbÞgb2fA,C,G,Tg. In practice, pX are estimated from nX plus

some pseudocounts to reduce small sample biases and to avoid zero

probabilities. The assumption of independence between positions

is not entirely accurate, but acts as a useful approximation

(Benos et al., 2002a).

The Pearson Correlation Coefficient (PCC) has been previously

used by us and others to compare DNA motif columns (Benos et al.,

2002a; Hughes et al., 2000; Mahony et al., 2005), and gives a measure

of agreement between two (unweighted) sets of observations by

means of their covariance. PCC is defined by:

PCCðX,YÞ ¼

PT
b¼A fXðbÞ � fX

� �
� fYðbÞ � fY
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
b¼A fXðbÞ � fX

� �2
�
PT

b¼A fYðbÞ � fY
� �2q ð1Þ
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We have recently found the PCC metric to have superior DNA motif

alignment performance over alternatives (Mahony et al., 2007).

2.2 Comparing motifs of different lengths: P-values

A dataset of 10 000 simulated PSSMs reflecting the properties of

the PSSM models in the JASPAR database was constructed

as described in the following web site: http://forkhead2.cgb.ki.se/

jaspar/additional/index.htm. Sandelin and Wasserman’s method

(Sandelin and Wasserman, 2004) was then used for the calculation of

empirical P-values that are independent of the length of the compared

motifs. In this method, the alignment scores observed between all

possible pairings of the simulated PSSMs are grouped according to

the lengths of the paired matrices. Probability distributions specific

to pairs of matrices of any given length are thus constructed and allow

calculation of the probability that an observed similarity score is no

better than that of a pair of random PSSMs of the same lengths.

2.3 Pairwise and multiple motif alignment and

tree-building methods

An ungapped, extended Smith–Waterman local alignment strategy

(Smith and Waterman, 1981) is used in this study, where the ‘motif

cores’ of the PSSM models under comparison are aligned before

extending the local alignment. The ‘core’ is defined as the longest of

(a) the four most informative adjacent columns and (b) the ‘trimmed’

motif (starting and ending at a position with information content

at least 0.3). Optimal alignment is sought in both forward/reverse

motif directions.

Iterative refinement is used as the multiple alignment strategy,

and aims to combat the common problem of local minima due

to ‘frozen’ subalignments (Barton and Sternberg, 1987). Iterative

refinement builds a rough multiple alignment by progressively

adding to the current alignment the most similar input PSSM.

Once the initial alignment is built, each PSSM is removed from the

alignment in turn and realigned to a profile of the other aligned

sequences. Iteration of the realignment continues a fixed number

of times.

The trees constructed for the homeodomain and basic region

examples are built using a UPGMA algorithm, where the distances

between motifs are derived from the similarity P-values. All pairwise

alignment, multiple alignment and tree-building algorithms employed

in this study are accessible from the STAMP web-platform (http://

www.benoslab.pitt.edu/stamp).

2.4 Mutual information

Mutual information (i.e. covariance dependency) has long been used

as an aid to RNA secondary structure prediction, allowing

the detection of pairs of codependant columns in an alignment of

RNA sequences (Chiu and Kolodziejczak, 1991; Gutell et al., 1992).

In this study, we demonstrate that mutual information analysis of

DNA motif multiple alignments may assist in the prediction of

protein positions that affect DNA binding at particular base

positions. The mutual information, Mij, between a DNA motif

multiple alignment column and a protein alignment column is

defined as:

Mij ¼
XT

ib¼A

XY

ja¼A
fib, ja � log2

fib, ja
fib � fja

, ð2Þ

where fib is the observed frequency of base b (b2{A,C,G,T}) in

column i of the DNA alignment, fja is the frequency of amino

acid a (a2{A,C,D,. . .,Y}) in column j of the protein alignment and

fib, ja is the joint (pairwise) frequency of this base-amino acid

position combination. A multiple alignment of related DNA-binding

motifs may be constructed using the methods described above.

Given a multiple alignment of the corresponding DNA-contacting

domain protein sequences, the mutual information between

positions in the proteins and their DNA targets may be calculated.

The protein positions that exhibit high mutual information for

one or more base positions are more likely to be involved in

the binding mechanism; either by directly contacting the correspond-

ing bases or indirectly, e.g. by stabilizing a ‘core’ of contacting

amino acids.

2.5 Limitations of mutual information analysis

Low mutual information values should be treated with caution.

Low scores suggest that the corresponding base and amino acid

positions show no codependence only if both positions are varying

independently. Naturally, covariance cannot be used to measure

anything useful if one or both positions are invariant. These cases

should be treated as ‘missing values’ rather than ‘no co-dependence’.

On the other hand, high mutual information values may indicate

covariance only if both positions have sufficient examples to

provide statistical significance. For example, we may easily imagine

the extreme scenario where four aligned protein sequences contain

different amino acids in a particular position. This position will

show ‘high’ mutual information value if the four amino acids

happen to pair with different nucleotides. In such a case, however,

the ‘co-variance’ would be entirely coincidental. We ideally want the

number of observed pairs (x) to be high, as larger numbers of

examples will allow us to distinguish between true and coincidental

covariance.

We can use simulations to measure the extent to which coincidental

covariance could occur. To do this, 10 000 sets of x random base/amino

acid pairs were generated, and mutual information scores were

calculated for each set. For varying x, the average proportion of the

random sets that produce a mutual information score of less than

0.5 (an arbitrary low threshold) is displayed in Figure 1. As may be seen

from the figure, 140 base/amino acid pairs are required before the

chance of randomly receiving a mutual information score greater than

0.5 falls below 1%. In the EGR zinc finger example discussed below,

x¼ 3099 for the coalesced set after separating each of the three zinc

fingers and their DNA target, so this set obviously passes the

significance threshold.

Note that the above simulations and associated significance threshold

of 140 pairs are applicable only to those cases where single amino acids

are paired with single bases. In the general case, where the target

Fig. 1. Proportion of mutual information scores �0.5 for random

base/amino acid pairs.
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motif PSSM columns may represent many aligned bases, the minimum

number of observed pairs required to reach statistical significance

decreases. Simulations where the observed nucleotide–amino acid

pairings are randomly shuffled may be used to assign P-values to

observed mutual information scores. In the text below, all discussed

peaks of mutual information are significant (P� 0.0001) according

to such random shuffling simulations.

2.6 Structural analysis

Molecular structural inspection was carried out using RasMac version

2.7.3 (Sayle and Milner-White, 1995). Coordinate data was obtained

from the RCSB Protein Data bank (www.rcsb.org). Analysis included

examination of the C2H2 zinc fingers for EGR1 (1AAY), and the

homeodomains for Engrailed (1HDD), Antennapedia (9ANT) and

MATa1 (1YRN). For the basic helix-loop-helix (bHLH) example,

protein–DNA complex structures were examined for pho4 (1A0A)

and myoD (1MDY).

3 RESULTS

3.1 Cys2His2 (C2H2) zinc finger proteins

The predictive efficiency of the mutual information measure

was tested on the C2H2 TF family, the most abundant

TF-DNA binding domain found in the Pfam motif database

today [Pfam v.19.0 (Bateman et al., 2004)]. A previously

published dataset of protein–DNA interaction examples for

EGR1 (a member of the C2H2 family) and its mutants

(Benos et al., 2002b) was used as the basis for this test.

The dataset contains 1033 pairs of EGR1-derived protein

sequence and corresponding bound DNA sequence as

determined by phage display and SELEX experiments.

EGR1 proteins contain three zinc fingers, and co-crystal

structures show that amino acids at positions �1 and either

þ3 or þ6 of the helices contact one DNA base each

(major groove) in an anti-parallel fashion (Elrod-Erickson

et al., 1996; Pavletich and Pabo, 1991) (Fig. 2). In addition,

the amino acid at position þ2 can contact DNA position 4

in the opposite strand (overlapping base). In order to assess

the general binding properties of an individual zinc-finger

�-helix, the fingers in each of the protein–DNA binding

examples are coalesced. Comparison of the aligned set of

zinc-finger sequences against their preferred DNA target

motifs showed strong peaks of mutual information in the

expected protein–DNA ‘contacting’ positions as well as some

additional ones (Fig. 3). For example, amino acid position

þ2 covaries with the third base position but not with the

expected fourth base position. It is known, however, that

aspartic acid at position þ2 in EGR1 zinc fingers interacts

with and helps orient the arginine at position �1,

which contacts the third base (Elrod-Erickson et al., 1996;

Pavletich and Pabo, 1991). Thus, replacing aspartic acid

will influence the binding on the third base. Importantly,

the glutamate at position þ3 covaries with the second

base position. This is in strong agreement with the crystal

structure, in which helical position þ3 makes an H-bond

contact to the second base (Elrod-Erickson et al.,

1996). Interestingly, position þ3 also appears to covary

somewhat with the first base position, possibly reflecting

van der Waals contacts that are also observed in the crystal
structure.

3.2 Homeodomain proteins

The coevolution of homeodomain proteins with their DNA-
binding motifs was also analyzed. DNA-binding motifs of

25 homeodomain proteins [representing over 729 documented
TF binding sites taken from TRANSFAC (Matys et al., 2003)

and JASPAR (Sandelin et al., 2004)] were aligned using
ungapped Smith–Waterman alignment with the PCC metric

and iterative refinement multiple alignment. The choice of
motifs was dependent on their displaying some similarity to the

classical ‘ATTA’ homeobox target motif. Figure 4 presents the
alignment of the motifs and their corresponding phylogenetic
tree. Note that in this figure the tree branch lengths are based

on the distances of the DNA motifs, not the proteins. The
protein alignment of the homeodomain members was obtained

directly from the Pfam database [Pfam v.19.0 (Bateman et al.,
2004), Accession: PF00046].

Mutual information was calculated from the DNA motifs
and protein multiple alignments, and is presented (color coded)
in Figure 5 for 12 amino acids contained within the homeo-

domain recognition helix. The amino acids and bases are
numbered in Figure 5 to correspond with the convention for the

Engrailed homeodomain TF-DNA complex in the Protein Data
Bank (PDB:1HDD). One of the highly mutually informative

sites is the pairing of position 50 in the protein domain with
position 8 in the motif multiple alignment. The importance of
this pair of positions has been long recognized and experimen-

tally confirmed (Treisman et al., 1989), and provides a textbook
example of how changing a single amino acid can drastically

affect the DNA-binding specificity of the homeodomain
proteins (Latchman, 2004). There are two other known

Fig. 2. A model of the mode of DNA recognition for EGR-family zinc

fingers.
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DNA-contacting residues (positions 47 and 51) that the mutual

information plot misses. For position 51, the ultraconserved

(invariant) amino acid residue prohibits any covariance

analysis.
The mutual information plot also suggests that other

positions in the protein domain can influence the binding

specificity in and around the core ‘ATTA’ homeobox target

motif. These include amino acid positions 46 and 54, which, like

position 50, usually project away from the homeodomain

protein core and toward the DNA major groove. Position 46 is,

for some homeodomains, in contact with position 50. Examples

include the polar interaction that occurs in the Engrailed

homeodomain (PDB:1HDD) (Kissinger et al., 1990) and the

close contact for these residues in the Antennapedia homeo-

domain (PDB:9ANT) (Fraenkel and Pabo, 1998). The

potential for position 46 to affect the conformation of position

50 may explain the similar observed covariance patterns.

Also, position 54 reveals a related, but somewhat distinct,

covariance pattern. This residue can be found either in van der

Waals contact or close proximity to backbone sugar atoms

at positions 7 and 8 in the motif multiple alignment for the

Antennapedia complex and at position 13 for MATa1

(PDB:1YRN) (Li et al., 1995), consistent with the observed

covariance pattern (Fig. 6).

3.3 bHLH and bHLH-ZIP proteins

Basic helix-loop-helix regions are used by various TF families

to mediate DNA binding. Most of these TFs form homo- or

hetero-dimers, and many recognize target sites of the form

50-CANNTG-30, also known as the E-box. For example, many

bHLH and bHLH-ZIP TFs (such as pho4, myc and max)

Fig. 3. Mutual information between EGR1-derived mutant finger domains and their targets as derived from in vitro selection experiments.

Fig. 4. The aligned DNA motif targets for the homeodomain proteins.

The phylogenetic tree represents relative distances between DNA

motifs.
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recognize target sites of the form 50-CACGTG-30. In contrast,

some bHLH TFs (including myogenic bHLH TFs, such as

myoD and myogenin) preferably bind to sites of the form

50-CAGGTG-30.
A number of published protein–DNA complex structures

have illustrated the binding mechanism for various representa-

tive bHLH TFs. For example, positions 3L, 2L, 2R0 and 3R0 at

the edges of the CANNTG target are contacted using direct

recognition by His5 and Glu9 in pho4 (Shimizu et al., 1997) and

myoD (Ma et al., 1994). The position corresponding to Glu9 is

ultra conserved throughout all bHLH proteins. Subclasses of

bHLH TFs differ in their recognition mechanism of the central

2 bp. Arg13 was shown to directly contact the central 2 bp in

pho4 (Shimizu et al., 1997), but in myoD the contact is water

mediated (Ma et al., 1994). In addition, an asymmetrical

contacting pattern in the central 2 bp was observed in E47,

a CAGGTG-binding TF (Ellenberger et al., 1994).
Mutual information is used here to explore other potential

protein sequence variations that underlie the distinct binding

preferences in the central binding position (1R0). The bHLH

protein domain alignment was downloaded from Pfam

(Accession: PF00010). A set of 24 DNA-binding motifs

(representing over 528 documented TF binding sites) that

bind to CACGTG or CAGGTG motifs were extracted from

JASPAR and TRANSFAC and aligned as before. Only

homodimer binding motifs were included. The motifs are

aligned as shown in Figure 7. Note how the tree distinguishes

between the two subclasses of DNA-binding motif. The mutual

information plot based on this motif multiple alignment and

Fig. 5. Mutual information between recognition helices from the homeodomain protein family and their corresponding DNA-binding motifs.

Fig. 6. Representative homeodomain structure reveals the relative

location of amino acid positions 46, 50 and 54 with respect to the

ATTA target motif. In this example, the MATa1 homeodomain protein

(ribbons and thin sticks) is shown with the DNA recognition alpha helix

(R�H) positioned within the DNA major groove. Amino acid side

chains 46, 50 and 54 are displayed as space-filling atoms (numbered), as

are the DNA backbone atoms (gray sugar and red/orange phosphates).

The DNA bases are displayed as thick sticks and numbered (italics) as

presented in Figure 5.
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13 amino acids within the basic binding region is shown
in Figure 8. The amino acids and bases are numbered in

Figure 8 according to the convention for the pho4 bHLH

TF-DNA complex in the Protein Data Bank (PDB:1A0A)

(Shimizu et al., 1997).
Since the DNA-binding motifs are relatively similar in all

positions other than 1R0, we should not expect significant
mutual information peaks outside of this position. Peaks of

mutual information with the variant base (1R0) appear at amino

acid positions 8, 13 and 14. As mentioned above, position 13 is

known to contact 1R0 for those TFs that bind the CACGTG

motif. Blackwell et al. demonstrated that mutating myoD’s
positions 8 and 13 (Arg8 & Leu13) to their corresponding c-myc

residues (Leu8, Arg13) was sufficient to switch myoD’s

CAGGTG-binding preference to CACGTG (Blackwell et al.,

1993). The role of residue 8 is not well known; no solved
structure shows contacts between position 8 and the central

2 bp. However, all CAGGTG-binding TFs share an arginine at

position 8, while other bHLH TFs typically possess hydro-

phobic residues (e.g. max, a CACGTG-binding TF, has a
leucine at this position). Mutating myoD’s position 8 arginine

to a leucine knocks out DNA binding (Van Antwerp et al.,

1992). Therefore, while the arginine at position 8 may not be

involved in directly contacting 1R0, the residue is clearly

a distinguishing feature of CAGGTG-binding TFs, and is
correctly identified as such by the mutual information analysis.

4 DISCUSSION

While mutual information is widely used to find covariant
pairs of positions within single molecules (e.g. in alignments of

RNA sequences), this study demonstrates that mutual

Fig. 7. Iterative refinement multiple alignment and UPGMA tree

constructed from the bHLH DNA-binding motifs.

Fig. 8. Mutual information between the recognition helices from selected basic region-containing TFs and their corresponding DNA-binding motifs.
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information may also find dependence between two interacting
biomolecules. We have shown that appropriately aligned DNA
motifs of related TFs can be used to predict the amino acid

positions that critically affect DNA-binding preference (directly
or indirectly). This is expected to enhance the field of protein
engineering. Currently, in the absence of a protein structure,

a number of time-consuming protein–DNA binding experi-
ments (such as SELEX on wild type proteins and their
mutants), are required for the identification of DNA-contacting

positions and their subsequent mutation towards a desired
DNA specificity. Mutual information analysis may help guide
such experiments. The above examples on three TF families

demonstrate that key protein positions for DNA binding can be
identified using mutual information plots. In all three examples,
known DNA-contacting residues were shown to share a high

degree of mutual information with their contacted base.
Changes in other non-contacting, but mutually informative,
residues may induce structural conformations and may there-
fore have an indirect effect on DNA-binding preference.

Perhaps more fundamentally, mutual information analysis
can yield useful insights into the evolutionary history of a
TF family’s mode of DNA recognition. For example, by

analyzing the representatives of a number of diverse bHLH TF
subfamilies, we are able to find residues that distinguish
the general binding preference of one subfamily from that

of others.
As noted in the Methods section, the accuracy of mutual

information plots is critically dependent on the number of

available examples. If this number is low, high mutual
information scores can occur by chance. Given that only
a small fraction of known TFs have corresponding DNA-

binding models stored in the databases, the issue of insufficient
data may make mutual information analysis challenging
for many TF families. One possible approach to partially

alleviating the issue of high covariance scores occurring by
chance is via reduced amino acid alphabets. For example,
if amino acids are grouped according to their characteristics,

the number of parameters that need to be estimated in mutual
information analysis would also be reduced, thus reducing the
number of training examples required to reach statistically

significant conclusions. We note that the use of mutual
information cannot yield insight into protein–DNA interac-
tions at invariant protein or DNA positions (e.g. position 51 of

the homeodomain proteins; Fig. 5), although this is a lesser
problem for practical purposes, since invariant positions are
generally the first targets in mutation experiments.

It should also be noted that C2H2 zinc-finger domains
possess a greater flexibility for variation than homeodomain
or bHLH recognition helices, resulting in an apparently

higher potential for modification in the absence of structural
perturbation (Pabo et al., 2001). In general, the flexible nature
of C2H2 zinc-finger DNA binding makes this family more

amenable to mutual information analysis than most other
classes of TFs. TF families such as homeodomain and bHLH
TFs possess structures that are specifically tuned to recognize

a limited number of similar sequences. Since amino acid
substitutions in such TFs may result in complete loss of DNA
binding (rather than a change in specificity), invariant positions

in the DNA-binding motif alignments are more likely, thus

reducing the effectiveness of mutual information analysis.

However, as demonstrated in this study, mutual information

may still provide useful structural insights when subtle changes

in DNA-binding preference are observed. For example, a high

order of intradomain structural cooperativity for homeo-

domain recognition helices may contribute to the similar

covariance profiles observed for positions 46, 50 and 54

in Figure 5.
The results presented here suggest that mutual information

plots can become an important tool for guiding protein–DNA

association studies as the databases of TF binding matrices

become larger. In the interim, the structural significance of

mutually informative residues will have to be further explored

through examination of appropriate protein–DNA structures

and by mutation experiments.
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