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ABSTRACT

Motivation: Mutual information can be used to explore covarying
positions in biological sequences. In the past, it has been
successfully used to infer RNA secondary structure conformations
from multiple sequence alignments. In this study, we show that the
same principles allow the discovery of transcription factor amino
acids that are coevolving with nucleotides in their DNA-binding
targets.

Results: Given an alignment of transcription factor binding domains,
and a separate alignment of their DNA target motifs, we demonstrate
that mutually covarying base-amino acid positions may indicate
possible protein-DNA contacts. Examples explored in this study
include C2H2 zinc finger, homeodomain and bHLH DNA-binding
motif families, where a number of known base-amino acid contacting
positions are identified. Mutual information analyses may aid the
prediction of base-amino acid contacting pairs for particular
transcription factor families, thereby yielding structural insights
from sequence information alone. Such inference of protein-DNA
contacting positions may guide future experimental studies of DNA
recognition.

Contact: shaun.mahony@ccbb.pitt.edu or benos@pitt.edu

1 INTRODUCTION

Transcription factor (TF) proteins recognize their DNA targets
via the formation of a network of specific and non-specific
molecular interactions. TF DNA-binding preferences are
usually modeled using frequency matrices derived from
alignments of known sites. Typically, these position-specific
scoring matrices (PSSMs) assume independence between the
base positions (Stormo, 2000). Structurally related TFs often
share similarities in their DNA-binding motifs. Generalized
binding models or familial binding profiles (FBPs) constitute a
measure of the ‘average’ binding specificity for a family of TFs
(Sandelin and Wasserman, 2004). Structural information and
protein sequence comparisons have been previously used to
cluster TF binding profiles in order to build FBPs (Sandelin
and Wasserman, 2004), and automatic methods have been
recently introduced (Mahony et al., 2007). FBPs allow DNA
pattern discovery algorithms to be biased towards a particular
TF structural class (Mahony et al., 2005). In addition, FBPs
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can be used to infer the identity of the TF family for predicted
novel motifs (Mahony er al., 2007; Sandelin and Wasserman,
2004), or to remove degeneracy between related motifs in the
motif repositories (Cartharius ez al., 2005).

In this study, we use FBP construction methods to define
alignments of related DNA-binding motifs. Given an alignment
of DNA-binding motifs from a family of related TFs, and
a separate alignment of their corresponding DNA-binding
domain sequences, we demonstrate that mutual information can
be calculated for each pair of positions between the alignments.
Positions of high covariance are shown to correspond to TF
residues that have a critical effect on DNA recognition. We
demonstrate the effectiveness of this method using C2H2 zinc
finger, homeodomain and basic helix-loop-helix (bHLH)
binding domain DNA motifs, where known protein-DNA
contacting positions are recovered using sequence information
alone. The prediction of nucleotide—amino acid contacting
potential from sequence data alone is invaluable in directing
mutagenic experimentation for elucidating mechanisms of TF-
DNA recognition. As demonstrated in this article, mutual
information analyses can certainly play a role in such
predictions.

2 METHODS

2.1 Comparing PSSM columns

A PSSM model of length L is comprised of a set of 4 x L weights
(columns). Each column, X, follows a probability distribution,
{Px(D)}peia.c.c.my» With the base probability values reflecting the binding
preference of the TF to the corresponding base in this position.
The probability values can be estimated from the observed
base counts, {ny(b)}peiscory- We denote the estimated values
SX) = {fx(b)}peta.cc.y- In practice, py are estimated from ny plus
some pseudocounts to reduce small sample biases and to avoid zero
probabilities. The assumption of independence between positions
is not entirely accurate, but acts as a useful approximation
(Benos et al., 2002a).

The Pearson Correlation Coefficient (PCC) has been previously
used by us and others to compare DNA motif columns (Benos ez al.,
2002a; Hughes et al., 2000; Mahony et al., 2005), and gives a measure
of agreement between two (unweighted) sets of observations by
means of their covariance. PCC is defined by:

S (fx®) = Fx) - (fx(b) = 1)
VL, (B = Fx) - S (v — T )

PCC(X,Y) = 1)
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We have recently found the PCC metric to have superior DNA motif
alignment performance over alternatives (Mahony et al., 2007).

2.2 Comparing motifs of different lengths: P-values

A dataset of 10000 simulated PSSMs reflecting the properties of
the PSSM models in the JASPAR database was constructed
as described in the following web site: http://forkhead2.cgb.ki.se/
jaspar/additional/index.htm. Sandelin and Wasserman’s method
(Sandelin and Wasserman, 2004) was then used for the calculation of
empirical P-values that are independent of the length of the compared
motifs. In this method, the alignment scores observed between all
possible pairings of the simulated PSSMs are grouped according to
the lengths of the paired matrices. Probability distributions specific
to pairs of matrices of any given length are thus constructed and allow
calculation of the probability that an observed similarity score is no
better than that of a pair of random PSSMs of the same lengths.

2.3 Pairwise and multiple motif alignment and
tree-building methods

An ungapped, extended Smith—-Waterman local alignment strategy
(Smith and Waterman, 1981) is used in this study, where the ‘motif
cores’ of the PSSM models under comparison are aligned before
extending the local alignment. The ‘core’ is defined as the longest of
(a) the four most informative adjacent columns and (b) the ‘trimmed’
motif (starting and ending at a position with information content
at least 0.3). Optimal alignment is sought in both forward/reverse
motif directions.

Iterative refinement is used as the multiple alignment strategy,
and aims to combat the common problem of local minima due
to ‘frozen’ subalignments (Barton and Sternberg, 1987). Iterative
refinement builds a rough multiple alignment by progressively
adding to the current alignment the most similar input PSSM.
Once the initial alignment is built, each PSSM is removed from the
alignment in turn and realigned to a profile of the other aligned
sequences. Iteration of the realignment continues a fixed number
of times.

The trees constructed for the homeodomain and basic region
examples are built using a UPGMA algorithm, where the distances
between motifs are derived from the similarity P-values. All pairwise
alignment, multiple alignment and tree-building algorithms employed
in this study are accessible from the STAMP web-platform (http://
www.benoslab.pitt.edu/stamp).

2.4 Mutual information

Mutual information (i.e. covariance dependency) has long been used
as an aid to RNA secondary structure prediction, allowing
the detection of pairs of codependant columns in an alignment of
RNA sequences (Chiu and Kolodziejczak, 1991; Gutell ez al., 1992).
In this study, we demonstrate that mutual information analysis of
DNA motif multiple alignments may assist in the prediction of
protein positions that affect DNA binding at particular base
positions. The mutual information, M, between a DNA motif
multiple alignment column and a protein alignment column is
defined as:

T SO0 > I R
L Jib 'f/a

where f; is the observed frequency of base b (be{A4,C,G,T}) in

column i of the DNA alignment, f;, is the frequency of amino

acid a (ae{A,C,D,...,Y}) in column j of the protein alignment and

finja 18 the joint (pairwise) frequency of this base-amino acid

position combination. A multiple alignment of related DNA-binding

motifs may be constructed using the methods described above.
Given a multiple alignment of the corresponding DNA-contacting
domain protein sequences, the mutual information between
positions in the proteins and their DNA targets may be calculated.
The protein positions that exhibit high mutual information for
one or more base positions are more likely to be involved in
the binding mechanism; either by directly contacting the correspond-
ing bases or indirectly, e.g. by stabilizing a ‘core’ of contacting
amino acids.

2.5 Limitations of mutual information analysis

Low mutual information values should be treated with caution.
Low scores suggest that the corresponding base and amino acid
positions show no codependence only if both positions are varying
independently. Naturally, covariance cannot be used to measure
anything useful if one or both positions are invariant. These cases
should be treated as ‘missing values’ rather than ‘no co-dependence’.
On the other hand, high mutual information values may indicate
covariance only if both positions have sufficient examples to
provide statistical significance. For example, we may easily imagine
the extreme scenario where four aligned protein sequences contain
different amino acids in a particular position. This position will
show ‘high’ mutual information value if the four amino acids
happen to pair with different nucleotides. In such a case, however,
the ‘co-variance’ would be entirely coincidental. We ideally want the
number of observed pairs (x) to be high, as larger numbers of
examples will allow us to distinguish between true and coincidental
covariance.

We can use simulations to measure the extent to which coincidental
covariance could occur. To do this, 10000 sets of x random base/amino
acid pairs were generated, and mutual information scores were
calculated for each set. For varying x, the average proportion of the
random sets that produce a mutual information score of less than
0.5 (an arbitrary low threshold) is displayed in Figure 1. As may be seen
from the figure, 140 base/amino acid pairs are required before the
chance of randomly receiving a mutual information score greater than
0.5 falls below 1%. In the EGR zinc finger example discussed below,
x=23099 for the coalesced set after separating each of the three zinc
fingers and their DNA target, so this set obviously passes the
significance threshold.

Note that the above simulations and associated significance threshold
of 140 pairs are applicable only to those cases where single amino acids
are paired with single bases. In the general case, where the target
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Fig. 1. Proportion of mutual information scores >0.5 for random
base/amino acid pairs.

i298



Inferring protein-DNA dependencies

motif PSSM columns may represent many aligned bases, the minimum
number of observed pairs required to reach statistical significance
decreases. Simulations where the observed nucleotide-amino acid
pairings are randomly shuffled may be used to assign P-values to
observed mutual information scores. In the text below, all discussed
peaks of mutual information are significant (P <0.0001) according
to such random shuffling simulations.

2.6 Structural analysis

Molecular structural inspection was carried out using RasMac version
2.7.3 (Sayle and Milner-White, 1995). Coordinate data was obtained
from the RCSB Protein Data bank (www.rcsb.org). Analysis included
examination of the C2H2 zinc fingers for EGRI (1AAY), and the
homeodomains for Engrailed (1HDD), Antennapedia (9ANT) and
MATal (1YRN). For the basic helix-loop-helix (b HLH) example,
protein-DNA complex structures were examined for pho4 (1A0A)
and myoD (IMDY).

3 RESULTS
3.1 Cys;His, (C2H2) zinc finger proteins

The predictive efficiency of the mutual information measure
was tested on the C2H2 TF family, the most abundant
TF-DNA binding domain found in the Pfam motif database
today [Pfam v.19.0 (Bateman er al., 2004)]. A previously
published dataset of protein-DNA interaction examples for
EGR1 (a member of the C2H2 family) and its mutants
(Benos et al., 2002b) was used as the basis for this test.
The dataset contains 1033 pairs of EGRI-derived protein
sequence and corresponding bound DNA sequence as
determined by phage display and SELEX experiments.
EGRI1 proteins contain three zinc fingers, and co-crystal
structures show that amino acids at positions —1 and either
+3 or +6 of the helices contact one DNA base each
(major groove) in an anti-parallel fashion (Elrod-Erickson
et al., 1996; Pavletich and Pabo, 1991) (Fig. 2). In addition,
the amino acid at position +2 can contact DNA position 4
in the opposite strand (overlapping base). In order to assess
the general binding properties of an individual zinc-finger
a-helix, the fingers in each of the protein-DNA binding
examples are coalesced. Comparison of the aligned set of
zinc-finger sequences against their preferred DNA target
motifs showed strong peaks of mutual information in the
expected protein-DNA ‘contacting’ positions as well as some
additional ones (Fig. 3). For example, amino acid position
+2 covaries with the third base position but not with the
expected fourth base position. It is known, however, that
aspartic acid at position +2 in EGRI1 zinc fingers interacts
with and helps orient the arginine at position -1,
which contacts the third base (Elrod-Erickson et al., 1996;
Pavletich and Pabo, 1991). Thus, replacing aspartic acid
will influence the binding on the third base. Importantly,
the glutamate at position +3 covaries with the second
base position. This is in strong agreement with the crystal
structure, in which helical position 43 makes an H-bond
contact to the second base (Elrod-Erickson et al,
1996). Interestingly, position +3 also appears to covary
somewhat with the first base position, possibly reflecting

van der Waals contacts that are also observed in the crystal
structure.

3.2 Homeodomain proteins

The coevolution of homeodomain proteins with their DNA-
binding motifs was also analyzed. DNA-binding motifs of
25 homeodomain proteins [representing over 729 documented
TF binding sites taken from TRANSFAC (Matys et al., 2003)
and JASPAR (Sandelin er al., 2004)] were aligned using
ungapped Smith—Waterman alignment with the PCC metric
and iterative refinement multiple alignment. The choice of
motifs was dependent on their displaying some similarity to the
classical ‘ATTA’ homeobox target motif. Figure 4 presents the
alignment of the motifs and their corresponding phylogenetic
tree. Note that in this figure the tree branch lengths are based
on the distances of the DNA motifs, not the proteins. The
protein alignment of the homeodomain members was obtained
directly from the Pfam database [Pfam v.19.0 (Bateman et al.,
2004), Accession: PF00046].

Mutual information was calculated from the DNA motifs
and protein multiple alignments, and is presented (color coded)
in Figure 5 for 12 amino acids contained within the homeo-
domain recognition helix. The amino acids and bases are
numbered in Figure 5 to correspond with the convention for the
Engrailed homeodomain TF-DNA complex in the Protein Data
Bank (PDB:1HDD). One of the highly mutually informative
sites is the pairing of position 50 in the protein domain with
position 8 in the motif multiple alignment. The importance of
this pair of positions has been long recognized and experimen-
tally confirmed (Treisman et al., 1989), and provides a textbook
example of how changing a single amino acid can drastically
affect the DNA-binding specificity of the homeodomain
proteins (Latchman, 2004). There are two other known
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Fig. 2. A model of the mode of DNA recognition for EGR-family zinc
fingers.
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Fig. 3. Mutual information between EGR1-derived mutant finger domains and their targets as derived from in vitro selection experiments.

S8 1 _ _<AATTA .
Ubx j ATTA
—En1 1 A A
Msx-1 GA_xxa-
HOXA4 Cza-IT.
Antp salTAx
S8 j AATTA
En CAa
Ftz --aATTAAG
— Ubx 1 _e-ATTA. ___
Abd-B _ Geocal.al ..
IPF1 q4 1CATTA_ -
Zen CArT.aa
IPF1 41 _ _LcATTA
CDP 1 a1ccATTATT!
coP2 _ ATcCAT.A.. _
Alx-4 CATTATTCTCA
Bcd ~GATTA.
| PITX2 —=GcGATTA
Crx —
Pbx1b  __ TTGATTGAT .
Pbx xTGATTUAT_
MATA1 ATTCTG=
Y ATTA.
Ncx IR i =

Fig. 4. The aligned DNA motif targets for the homeodomain proteins.
The phylogenetic tree represents relative distances between DNA
motifs.

DNA-contacting residues (positions 47 and 51) that the mutual
information plot misses. For position 51, the ultraconserved
(invariant) amino acid residue prohibits any covariance
analysis.

The mutual information plot also suggests that other
positions in the protein domain can influence the binding
specificity in and around the core ‘ATTA’ homeobox target
motif. These include amino acid positions 46 and 54, which, like
position 50, usually project away from the homeodomain
protein core and toward the DNA major groove. Position 46 is,
for some homeodomains, in contact with position 50. Examples
include the polar interaction that occurs in the Engrailed
homeodomain (PDB:1HDD) (Kissinger et al., 1990) and the
close contact for these residues in the Antennapedia homeo-
domain (PDB:9ANT) (Fraenkel and Pabo, 1998). The
potential for position 46 to affect the conformation of position
50 may explain the similar observed covariance patterns.
Also, position 54 reveals a related, but somewhat distinct,
covariance pattern. This residue can be found either in van der
Waals contact or close proximity to backbone sugar atoms
at positions 7 and 8 in the motif multiple alignment for the
Antennapedia complex and at position 13 for MATal
(PDB:1YRN) (Li et al., 1995), consistent with the observed
covariance pattern (Fig. 6).

3.3 bHLH and bHLH-ZIP proteins

Basic helix-loop-helix regions are used by various TF families
to mediate DNA binding. Most of these TFs form homo- or
hetero-dimers, and many recognize target sites of the form
5'-CANNTG-3', also known as the E-box. For example, many
bHLH and bHLH-ZIP TFs (such as pho4, myc and max)
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Fig. 5. Mutual information between recognition helices from the homeodomain protein family and their corresponding DNA-binding motifs.

Fig. 6. Representative homeodomain structure reveals the relative
location of amino acid positions 46, 50 and 54 with respect to the
ATTA target motif. In this example, the M ATal homeodomain protein
(ribbons and thin sticks) is shown with the DNA recognition alpha helix
(RaH) positioned within the DNA major groove. Amino acid side
chains 46, 50 and 54 are displayed as space-filling atoms (numbered), as
are the DNA backbone atoms (gray sugar and red/orange phosphates).
The DNA bases are displayed as thick sticks and numbered (italics) as
presented in Figure 5.

recognize target sites of the form 5-CACGTG-3'. In contrast,
some bHLH TFs (including myogenic bHLH TFs, such as
myoD and myogenin) preferably bind to sites of the form
5-CAGGTG-3'.

A number of published protein-DNA complex structures
have illustrated the binding mechanism for various representa-
tive bHLH TFs. For example, positions 3L, 2L, 2R” and 3R’ at
the edges of the CANNTG target are contacted using direct
recognition by His5 and Glu9 in pho4 (Shimizu et al., 1997) and
myoD (Ma et al., 1994). The position corresponding to Glu9 is
ultra conserved throughout all bHLH proteins. Subclasses of
bHLH TFs differ in their recognition mechanism of the central
2bp. Argl3 was shown to directly contact the central 2bp in
pho4 (Shimizu et al., 1997), but in myoD the contact is water
mediated (Ma et al., 1994). In addition, an asymmetrical
contacting pattern in the central 2bp was observed in E47,
a CAGGTG-binding TF (Ellenberger et al., 1994).

Mutual information is used here to explore other potential
protein sequence variations that underlie the distinct binding
preferences in the central binding position (1R’). The bHLH
protein domain alignment was downloaded from Pfam
(Accession: PF00010). A set of 24 DNA-binding motifs
(representing over 528 documented TF binding sites) that
bind to CACGTG or CAGGTG motifs were extracted from
JASPAR and TRANSFAC and aligned as before. Only
homodimer binding motifs were included. The motifs are
aligned as shown in Figure 7. Note how the tree distinguishes
between the two subclasses of DNA-binding motif. The mutual
information plot based on this motif multiple alignment and
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Fig. 7. Iterative refinement multiple alignment and UPGMA tree
constructed from the bLHLH DNA-binding motifs.

13 amino acids within the basic binding region is shown
in Figure 8. The amino acids and bases are numbered in
Figure 8 according to the convention for the pho4 bHLH
TF-DNA complex in the Protein Data Bank (PDB:1A0A)
(Shimizu et al., 1997).

Since the DNA-binding motifs are relatively similar in all
positions other than I1R’, we should not expect significant
mutual information peaks outside of this position. Peaks of
mutual information with the variant base (1R’) appear at amino
acid positions 8, 13 and 14. As mentioned above, position 13 is
known to contact 1R’ for those TFs that bind the CACGTG
motif. Blackwell er al. demonstrated that mutating myoD’s
positions 8 and 13 (Arg8 & Leul3) to their corresponding c-myc
residues (Leu8, Argl3) was sufficient to switch myoD’s
CAGGTG-binding preference to CACGTG (Blackwell et al.,
1993). The role of residue 8 is not well known; no solved
structure shows contacts between position 8 and the central
2 bp. However, all CAGGTG-binding TFs share an arginine at
position 8, while other bHLH TFs typically possess hydro-
phobic residues (e.g. max, a CACGTG-binding TF, has a
leucine at this position). Mutating myoD’s position § arginine
to a leucine knocks out DNA binding (Van Antwerp et al.,
1992). Therefore, while the arginine at position 8 may not be
involved in directly contacting 1R’, the residue is clearly
a distinguishing feature of CAGGTG-binding TFs, and is
correctly identified as such by the mutual information analysis.

4 DISCUSSION

While mutual information is widely used to find covariant
pairs of positions within single molecules (e.g. in alignments of
RNA sequences), this study demonstrates that mutual
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Fig. 8. Mutual information between the recognition helices from selected basic region-containing TFs and their corresponding DNA-binding motifs.
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information may also find dependence between two interacting
biomolecules. We have shown that appropriately aligned DNA
motifs of related TFs can be used to predict the amino acid
positions that critically affect DNA-binding preference (directly
or indirectly). This is expected to enhance the field of protein
engineering. Currently, in the absence of a protein structure,
a number of time-consuming protein-DNA binding experi-
ments (such as SELEX on wild type proteins and their
mutants), are required for the identification of DNA-contacting
positions and their subsequent mutation towards a desired
DNA specificity. Mutual information analysis may help guide
such experiments. The above examples on three TF families
demonstrate that key protein positions for DNA binding can be
identified using mutual information plots. In all three examples,
known DNA-contacting residues were shown to share a high
degree of mutual information with their contacted base.
Changes in other non-contacting, but mutually informative,
residues may induce structural conformations and may there-
fore have an indirect effect on DNA-binding preference.

Perhaps more fundamentally, mutual information analysis
can yield useful insights into the evolutionary history of a
TF family’s mode of DNA recognition. For example, by
analyzing the representatives of a number of diverse bHLH TF
subfamilies, we are able to find residues that distinguish
the general binding preference of one subfamily from that
of others.

As noted in the Methods section, the accuracy of mutual
information plots is critically dependent on the number of
available examples. If this number is low, high mutual
information scores can occur by chance. Given that only
a small fraction of known TFs have corresponding DNA-
binding models stored in the databases, the issue of insufficient
data may make mutual information analysis challenging
for many TF families. One possible approach to partially
alleviating the issue of high covariance scores occurring by
chance is via reduced amino acid alphabets. For example,
if amino acids are grouped according to their characteristics,
the number of parameters that need to be estimated in mutual
information analysis would also be reduced, thus reducing the
number of training examples required to reach statistically
significant conclusions. We note that the use of mutual
information cannot yield insight into protein-DNA interac-
tions at invariant protein or DNA positions (e.g. position 51 of
the homeodomain proteins; Fig. 5), although this is a lesser
problem for practical purposes, since invariant positions are
generally the first targets in mutation experiments.

It should also be noted that C2H2 zinc-finger domains
possess a greater flexibility for variation than homeodomain
or bHLH recognition helices, resulting in an apparently
higher potential for modification in the absence of structural
perturbation (Pabo et al., 2001). In general, the flexible nature
of C2H2 zinc-finger DNA binding makes this family more
amenable to mutual information analysis than most other
classes of TFs. TF families such as homeodomain and bHLH
TFs possess structures that are specifically tuned to recognize
a limited number of similar sequences. Since amino acid
substitutions in such TFs may result in complete loss of DNA
binding (rather than a change in specificity), invariant positions
in the DNA-binding motif alignments are more likely, thus

reducing the effectiveness of mutual information analysis.
However, as demonstrated in this study, mutual information
may still provide useful structural insights when subtle changes
in DNA-binding preference are observed. For example, a high
order of intradomain structural cooperativity for homeo-
domain recognition helices may contribute to the similar
covariance profiles observed for positions 46, 50 and 54
in Figure 5.

The results presented here suggest that mutual information
plots can become an important tool for guiding protein-DNA
association studies as the databases of TF binding matrices
become larger. In the interim, the structural significance of
mutually informative residues will have to be further explored
through examination of appropriate protein-DNA structures
and by mutation experiments.
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