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Abstract

Identification of the short DNA sequence motifs that serve as binding targets for transcription factors is an important challenge in
bioinformatics. Unsupervised techniques from the statistical learning theory literature have often been applied to motif discovery, but effective
solutions for large genomic datasets have yet to be found. We present here three self-organizing neural networks that have applicability to the
motif-finding problem. The core system in this study is a previously described SOM-based motif-finder named SOMBRERO. The motif-finder is
integrated in this work with a SOM-based method that automatically constructs generalized models for structurally related motifs and initializes
SOMBRERO with relevant biological knowledge. A self-organizing tree method that displays the relationships between various motifs is also
presented, and it is shown that such a method can act as an effective structural classifier of novel motifs. The performance of the three self-
organizing neural networks is evaluated here using various datasets.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Transcription factors (TFs) are proteins that bind to DNA
at cis-regulatory sites and regulate gene expression through
activating or inhibiting interactions with the transcriptional
machinery. Given a collection of DNA regions that are believed
to contain common regulatory elements, computational
methods aiming to find transcription factor binding sites
(TFBSs) typically proceed by identifying short DNA sequence
“motifs” that are statistically over-represented in the input. The
motif identification problem is notoriously difficult, however,
as motifs are short signals (6–20 bp long) that are hidden
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amongst a great amount of genomic noise (promoter regions
are typically thousands of base pairs long). The nature of the
TF–DNA interactions is such that TFs can frequently tolerate
variation around their “preferred” DNA target sequence. No
information is usually available as to the number of individual
TFBSs contained in the input sample, nor to the number of
different TFs that might have binding sites in the input sample.

Despite the difficulties, numerous motif prediction tech-
niques have become available over the past few years. Many ap-
proaches are based on statistical learning theory methods such
as expectation-maximization (e.g. MEME (Bailey & Elkan,
1994)) and Gibbs sampling (e.g. AlignACE (Hughes, Es-
tep, Tavazoie, & Church, 2000), Co-Bind (GuhaThakurta &
Stormo, 2001) and BioProspector (Liu, Brutlag, & Liu, 2001)).
Such methods work through maximum likelihood parameter
estimation of the motif model. Neural networks have rarely
been applied to the motif-identification problem, one notable
exception being ANN-Spec (Workman & Stormo, 2000), where
a Perceptron was combined with a Gibbs-sampler to increase
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the specificity of the estimated motif models. Alternative mo-
tif identification methods have also been proposed, includ-
ing word enumeration, winnowing, and dictionary construction
based methods (Bussemaker, Li, & Siggia, 2000; Gupta & Liu,
2003; Pevzner & Sze, 2000; Rigoutsos & Floratos, 1998; Sinha
& Tompa, 2002).

An alternative approach to the motif identification problem
can be defined by phrasing it in the terms of a clustering
problem. For example, instead of defining the problem in
terms of two models (the motif and the background) whose
parameters must be estimated by expectation maximization or
other such methods, consider the input sequence collection as
a set of short overlapping substrings which may be clustered
into a number of bins according to sequence similarity. After
clustering, each bin would contain an alignment of similar
substrings and therefore a motif. Given a large number of
bins, a corresponding large number of motifs would be
found by the clustering approach. The vast majority of these
motifs would not be TFBS motifs, and would instead be
due to the background mutation patterns of the genome.
Given an appropriate background model, TFBS motifs can be
distinguished from motifs that represent background noise.

One unsupervised clustering algorithm suitable for applica-
tion to the above alternative phrasing of the motif-identification
problem is the Self-Organizing Map (SOM) (Kohonen, 1995).
We have previously shown that the SOM can be applied to
the motif identification problem, and the SOMBRERO (Self-
Organizing Map for Biological Regulatory Element Recog-
nition and Ordering) framework resulted (Mahony, Hendrix,
Golden, Smith, & Rokhsar, 2005). In our previous publication,
it was demonstrated that SOMBRERO’s approach to simulta-
neously characterizing a complete set of motifs for a given
dataset helps to separate weak motif signals from large datasets,
and improved motif detection performance in real biological
datasets was observed.

We aim to demonstrate that self-organizing neural networks
can be applied to a wider range of DNA-binding motif related
problems than those described by the original SOMBRERO
manuscript. A recent trend in motif-discovery aims to
encapsulate the properties of motifs from evolutionarily
and structurally related transcription factors into generalized
motifs named “familial binding profiles” (FBPs; (Sandelin
& Wasserman, 2004)). The properties of such FBPs can be
employed to constrain motif-finders towards finding particular
classes of motifs. FBPs may also be used to classify a novel
motif according to structural class.

In this paper, a detailed description of the SOMBRERO al-
gorithm is made, including algorithmic aspects that were ne-
glected in our previous manuscript. In addition, a number of
recent algorithmic performance enhancements and paralleliza-
tion strategies are found to significantly improve the speed of
the algorithm without loss of prediction capability. We also
show that a SOM can be used to cluster known PSSMs, thereby
yielding a set of automatically generated FBPs. It is shown
that a SOM clustering of PSSMs can be used as an effective
source of prior knowledge for the SOMBRERO motif-finder,
and significant performance improvements are observed as a
result. These performance enhancements are demonstrated in
a eukaryotic genome-scale comparison of motif-finding perfor-
mance when SOMBRERO and two other popular motif-finders
are employed to predict the binding motifs of 77 distinct tran-
scription factors in the yeast genome.

Finally, we present the first application of a self-organizing
tree algorithm (SOTA) to the study of FBPs. The SOTA
algorithm is used here to visualize the evolutionary relations
between TF binding motifs and also to classify novel
PSSMs according to TF familial relationships. The three self-
organizing neural networks described in this study can interact
with each other to produce an effective platform for motif
discovery. In summary, self-organizing neural networks are
shown to have wide applicability to the motif-identification
problem.

2. DNA-binding motif representation

2.1. Position specific scoring matrices

It is usually possible for TFs to bind to a set of related
sequences that share some highly conserved positions as
well as some more variable positions. Given a collection of
binding sites for a particular transcription factor, the general
binding preference can be summarized by aligning the sites
and converting the alignment to a binding ‘motif’. Binding
motifs can be represented by various forms. The simplest
is the consensus sequence, where the general preference
at each position is denoted using a consensus alphabet
(e.g. Σconsensus = {A, C, G, T, R, Y, M, K , S, W, N }, where
R = A or G, Y = C or T , M = A or C , K = G or T ,
S = C or G, W = A or T , and N is any base). Consensus
sequences are commonly employed, but the choice of when
to use each degenerate letter is somewhat arbitrary (Day &
McMorris, 1992). The consensus sequence confers a significant
information loss from the original alignment, since it only
approximates the frequencies that each base appears in each
position of the alignment of binding sites. Consequently, the use
of consensus sequences for TFBS prediction in the promoters
of new genes is problematic due to the expected high number
of false positive predictions.

Another choice for representing binding motifs is the
Position Specific Scoring Matrix (PSSM). A PSSM model is
a 4 × ` matrix (` is the length of the DNA motif) in which
each column is log-proportional to the number of observations
of each nucleotide at this position of the alignment. A sequence
logo is a graphical representation of the motif, where the height
of the stack of letters at each position in the motif equals
the information content at that position, as it is defined in
Schneider, Stormo, Gold, and Ehrenfeucht (1986):

Ii = 2 +

T∑
b=A

fib log2 fib, (1)

where fib is an entry of a normalized PSSM (i.e. the observed
relative frequency of the base b at position i of the motif),
b ∈ {A, C, G, T } and i ∈ {1, 2, . . . , `}. Fig. 1 provides an
example of the consensus sequence, the PSSM model, and
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Fig. 1. (a) An alignment of binding sites, (b) a consensus sequence
representation of the alignment, (c) a PSSM representation, and (d) a sequence
logo representation.

the sequence logo. Similarity between a DNA substring and a
PSSM is provided by a log-likelihood ratio score, S(x), defined
as

S(x) =

∑̀
i=1

T∑
b=A

xib log
fib

pb
(2)

where pb is the background probability for base b and xib, a
position in the indicator matrix for the string x , is 1 if base
b is at position i of the string and 0 otherwise. A high score
S(x) indicates that the string x is more similar to the motif
characterized by the PSSM f than to the background model.
It has also been shown that the score S(x) is directly related to
the specificity of the interactions between the protein and the
DNA (Benos, Bulyk, & Stormo, 2002).

While PSSMs are free from information loss at each posi-
tion, they assume positional independence between nucleotides,
and do not allow for variable spacing between binding nu-
cleotides within a TBFS (insertion/deletion). Both assumptions
constitute an approximation of the protein–DNA binding prop-
erties. Advanced models that incorporate higher-order inter-
actions between binding positions (e.g. using Bayesian net-
works, frequency matrices that include pairwise correlations,
or variable length Markov models) have proven more effec-
tive than the PSSM in representing some protein–DNA interac-
tions (Barash, Elidan, Friedman, & Kaplan, 2003; Osada, Za-
slavsky, & Singh, 2004; Zhao, Huang, & Speed, 2005). How-
ever, the construction of higher order models requires much
larger datasets of known binding sites than do PSSMs, and
in any case the improvement in specificity offered by ad-
vanced models is often marginal (Benos et al., 2002). There-
fore, the most popular binding motif representation is currently
the PSSM, and collections of PSSMs constructed using align-
ments of documented binding sites are stored in databases
such as TRANSFAC (Wingender, Dietze, Karas, & Knuppel,
1996) and JASPAR (Sandelin, Alkema, Engstrom, Wasserman,
& Lenhard, 2004).

2.2. PSSM comparison and alignment

In Sections 4 and 5, Pietrokovski’s methods for aligning
two PSSMs are used (Pietrokovski, 1996), but are combined
with Sandelin and Wasserman’s method for calculating the
p-value of an alignment (Sandelin & Wasserman, 2004).
Specifically, column-to-column comparisons are made using
Pearson’s correlation coefficient:

r(C, D) =

T∑
b=A

(Cb − C) · (Db − D)√
T∑

b=A
(Cb − C)2 ·

T∑
b=A

(Db − D)2

(3)

where Cb and Db are the probability values of base b in
columns C and D, respectively, and C and D are the means
of the values in columns C and D, respectively. A modified
Smith–Waterman algorithm (Smith & Waterman, 1981) is used
to find optimal (gapless) local alignments of PSSM pairs.

In order to compare alignments of different widths, the
method for the calculation of empirical p-values described
by Sandelin and Wasserman is followed exactly. The method
involves extensive analysis with simulated PSSMs to determine
the likelihood of any score given the lengths of aligned
matrices. The simulated PSSMs reflect the properties of the
PSSMs in the JASPAR database (Sandelin et al., 2004).
The construction of a dataset of 10,000 simulated matrices
follows the instructions on Sandelin and Wasserman’s website
(http://forkhead2.cgb.ki.se/jaspar/additional/index.htm).

Note that a number of alternative DNA profile comparison
methods have been suggested in the literature, including an
average log likelihood method (Wang & Stormo, 2003), a
position-averaged Kullback–Leibler distance (Aerts, Van Loo,
Thijs, Moreau, & De Moor, 2003; Roepcke, Grossmann,
Rahmann, & Vingron, 2005), and a method based on
the likelihood that aligned columns are independently and
identically distributed observations from the same multinomial
distribution (Schones, Sumazin, & Zhang, 2005). Sandelin and
Wasserman’s p-value was chosen for this study as it calculates
PSSM similarity in a way that avoids matrix length biases.

3. Finding over-represented motifs using the SOM

3.1. The SOMBRERO motif-finder

SOMBRERO is based on a SOM whose general structure
is a two-dimensional (2-D) lattice of interconnected nodes. In
SOMBRERO’s architecture, PSSMs are embedded as models
at each node on the SOM grid. The motif discovery problem
aims to find over-represented features of length ` in an input
dataset of DNA sequences. SOMBRERO, therefore, aims to
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align similar `-mer sequences at each SOM node. With this aim
in mind, the training algorithm proceeds as follows:

Algorithm 1 (SOMBRERO).

1. An X × Y grid of nodes is created, and the coordinates of
the nodes are denoted by z = (z1, z2). Each node contains
a PSSM model f z and a count matrix cz that contains the
number of base b observations at each position i in the
current alignment.

2. A length ` is chosen, typically between 8 and 20, and the
input sequences are segmented into every overlapping `-mer
(x j , j = 1, . . . , N ). The PSSM models are initialized using
an ordered gradient random initialization, where the PSSMs
in each corner of the lattice are biased towards a particular
base (and gradients of preference exist in other nodes).

3. Each x j is assigned to the node with the corresponding
maximum likelihood, i.e. the highest score Sz(x j ).

4. Update step:
4.1. The count matrix cz is updated for each node, according

to the current set of `-mers aligned at the node.
4.2. New models are generated by augmenting the profile

matrix:

f z
ib =

∑
z′

Φ(|z − z′
|)cz′

ib + βpb∑
b′

∑
z′

Φ(|z − z′|)cz′

ib + β
(4)

where pb is the background probability model, β

is a small scaling factor that helps to avoid zero
probabilities, and Φ(|z − z′

|) is a neighbourhood
function that defines the proportion that a node will
contribute to another node based on their distance |z −

z′
| away on the SOM lattice. For our purposes, the

Gaussian neighbourhood function is used:

Φ(|z − z′
|) = e−[(z1−z′

1)
2
+(z2−z′

2)
2
]/γ . (5)

Here the term γ is a measure of the sharpness of the
neighbourhood function and is defined as γ ≡ 1/ log(δ)

so that adjacent nodes will contribute 1/δ of their counts
to each other. In practice, δ ranges from 4 to 15 over
the course of training. Thus, the contributions from f z

ib
to the counts of neighbouring nodes initially strongly
enforce the similarity of nearby nodes, and end up
contributing little at the end of training.

5. Training repeats from step 3 until convergence (defined here
as 100 cycles). Once convergence is reached, each string x j
is assigned to its most similar node. In the case where two
or more strings at a given node are overlapping strings in
the input sequences, only the string with the larger Sz(x j ), is
kept. At this point, each node will have a PSSM motif in its
final state as well as a list of `-mers that contributed to the
motif’s construction.

6. Post processing steps:
6.1. Significant features are distinguished from those that

would be expected due to chance. A third-order Markov
chain model of the relevant background is used to
generate 100 random datasets (each of the same length
as the training set), and these sets are used to find the
expected number of occurrences and standard deviation
of each motif, thus yielding z-scores (Zscore = (nobs −

〈n〉)/σ ) for each node’s motif.
6.2. Repetitive chains of DNA that exist throughout the

genome may sometimes be found as over-represented
motifs, but are in fact uninteresting from the viewpoint
of TF-binding motif identification. Such repetitive
motifs are filtered from the output (i.e. not reported
to the user even if appearing over-represented) using
a motif complexity score, where complexity refers
to a measure of the diversity of bases appearing in
the PSSM. The complexity score, which is a natural
extension of a common single-string score (Wan, Li,
Federhen, & Wootton, 2003), is given by

C(z) =

(
1
4

)` T∏
b=A

 `∑̀
i=1

f z
ib


∑̀
i=1

f z
ib

. (6)

Any nodes which receive less than a reasonably low
complexity score (0.01 in this study) are discounted
from being treated as a possible functional motif. Note
that of the 766 experimentally verified TF binding
motifs in version 9.3 of the TRANSFAC database, only
12 (1.56%) were found to have a complexity score
less than the threshold employed here. Note also that
the above complexity measure may underestimate the
complexity of longer motifs, as less deviation from
fib = 0.25 is tolerated when ` becomes large. However,
in the range of typical TF-binding motif lengths the
measure was found to serve as a suitable filtering
mechanism (∼94% of TRANSFAC motifs are ≤20 bp
in length).

7. In practice, various motifs of different lengths can exist
in a single dataset. Since the methods employed in this
algorithm rely on a fixed ` for comparisons between `-mers
and PSSMs, separate SOMs must be trained from step 2 for
various length `s. The significance of the motifs found for
different values of ` are comparable through the z-score of
step 6. Since the z-score is length independent, the motif
with the highest z-score across all SOMs trained will refer to
the most overrepresented motifs from all values of ` tested.
In this study, separate SOMs are typically trained across all
even lengths between 8 and 20.

3.2. Scaling the lattice size for larger datasets

In order to investigate the effect on motif-finding
performance of varying the SOM lattice size, various sized
SOM lattices were tested on artificial sequence datasets
with lengths varying from 1 to 10 kbp. Each sequence
dataset was created using a third-order Markov model of
yeast (Saccharomyces cerevisiae) intergenic sequences, and a
random number (mean ≈ 15) of mig1 binding motif instances
was placed at random positions in each dataset. The tests
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Fig. 2. The effect on SOMBRERO’s performance of varying the SOM lattice
size as a factor of input dataset size. The performance of a k-means based motif-
finder is also shown (where k is set equal to the number of nodes on the best
performing SOM in each dataset).

were run twenty times for each dataset size to generate the
average performance values displayed in Fig. 2. Performance
is measured using the harmonic mean (F) of sensitivity (SN )
and specificity (SP ):

F = 2(SN · SP )/(SN + SP ). (7)

Sensitivity is the percentage of true positive predictions over the
number of true sites; specificity is the percentage of true positive
predictions over the total number of predictions. The value of
F ranges from 1, representing perfect recall of the true motif
instances with no false positive predictions, to 0, representing
no correct prediction found for the motif. A k-means based
motif-finder (identical to SOMBRERO in all but the exclusion
of neighbourhood contributions in the update step) was also run
on the datasets, where k was set equal to the number of neurons
on the best performing SOM for each dataset size.

It is expected that the SOM size should be scaled up
for larger input data sets. Scaling is necessary because a
small SOM trained on a large dataset leads to overcrowding
at individual nodes, and thus motif-finding performance (in
particular specificity) is heavily reduced. Conversely, a large
SOM trained on a small dataset leads to the nodes becoming
too specialized, explaining the poorer performance rates in such
cases. In this application, the optimum SOM performance is
achieved by keeping a ratio in the order of ten input dataset
base pairs for every node on the SOM (Fig. 2). Applying this
empirically-determined ratio, the following lattice sizes were
used in this study: 10 × 10 nodes for datasets in the interval
0–1999 bp, 20×10 nodes for the interval 2000–3999 bp, 30×15
nodes for the interval 4000–7999 bp, 40 × 20 nodes for the
interval 8000–12,499 bp, and 50 × 25 nodes for datasets larger
than 12,500 bp.

Note that the SOMBRERO architecture uses the SOM as
a feature extractor, in contrast to the more common use of
large SOMs for data-space visualization. A number of other
clustering algorithms may serve the same purpose as the SOM
when applied to the motif-finding problem in this context.
As detailed in Fig. 2, however, a comparison between the
SOM and the k-means algorithm (with the same number of
cluster centroids as SOM lattice nodes) in a motif-finding
situation shows the SOM to have superior performance. The
performance advantages of the SOM may point to the non-
equiprobabilistic nature of the final SOM lattice state, as such
a property may afford more specificity to nodes containing
clusters of highly similar datapoints. In any case, the results
show that the neighbourhood function plays an important role
in optimizing the motifs found by SOMBRERO.

3.3. SOM optimization and parallelization

One of the major problems of the original SOMBRERO
algorithm was its computational cost. The training time was
O(L(MN)+(MN)2) when an M×N SOM was applied to a data
set of total length L . Originally, the Gaussian contribution from
every other node on the lattice was calculated for every node
that was undergoing an update, resulting in the (MN)2 term
in the time-cost equation. A simple calculation shows that the
original neighbourhood update is computationally wasteful. For
the Gaussian formula described in Eq. (5), and with δ varying
from 4 to 15, it can be shown that only those nodes within a
radius of five nodes have greater than 10−10 contribution to the
node being updated at the start of training. Making the obvious
optimization of only calculating neighbourhood contributions
from those nodes within a radius of five nodes significantly
speeds the training process, and has not been observed to affect
the motif-finding accuracy of SOMBRERO in any way.

The second optimizing adjustment made to SOMBRERO’s
algorithm uses a modified winning node search routine. An
exhaustive winning node search routine (i.e. searching through
all nodes on the lattice) is used for the first 20% of training
cycles. Thereafter, the search procedure searches only against
the previous winning node and its immediate neighbours. If
the local winning node is not identical to that found in the
previous cycle, the search is performed on the current local
winner and its neighbours. The exhaustive search procedure
is used every tenth training cycle in order to smooth out
any local maxima. Again, no adverse effects on motif-finding
accuracy were observed as a result of the above adjustment,
while the resulting speedup of training time was considerable.
Fig. 3 demonstrates the effect on the SOMBRERO training
phase time-cost (on a single processor) resulting from the
two optimizations described above. It should be noted that
both optimizations follow suggestions originally described by
Kohonen (1995).

In order to reduce the apparent time-cost for those users who
have access to multi-processor computing facilities, training
set parallelism was implemented on the SOMBRERO C++
code using the Message Passing Interface (MPI). Training set
parallelism allows each processing unit to contain separate
copies of the SOM (synchronized periodically) and the training
set is subdivided across each. The batch-learning SOM
algorithm is intuitively amenable to training set parallelization.
In SOMBRERO’s MPI-enabled implementation, the training
phase (Algorithm 1, steps 3–5) and the phase which maps
random DNA to the trained SOM (Algorithm 1, step 6.1)
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Fig. 3. The time taken to complete SOMBRERO’s training phase for various
sized datasets before and after implementation of the optimizations. The points
at which different sized SOM lattices are used are labelled with dashed lines.

are parallelized separately. The latter is the most successfully
parallelized, as this phase requires a minimum of inter-
processor communication until all sequences are mapped. The
resulting speedup for mapping random DNA to the SOM
is close to 1/n, where n is the number of processors used.
In parallelizing SOMBRERO’s training phase, however, the
SOMs at each processor must be consolidated after each
training iteration. The ensuing inter-processor communications
overhead does not allow optimally efficient speedup through
the use of more processors. The neighbourhood update step
(Eq. (4)) is also parallelized; for each node being updated,
each processor calculates the new models for a subset of
SOM nodes, and the SOM is again consolidated before the
new training iteration begins. Fig. 4 demonstrates the overall
speedup resulting from parallelization as a factor of the number
of processors used for various dataset sizes, where the MPI-
enabled version of SOMBRERO is running on an SGI Origin
3800 supercomputer.

4. Clustering motifs using the SOM: Automatic generation
of familial binding profiles

4.1. Familial binding profiles as priors for motif-finders

In the original description of the SOMBRERO algorithm,
randomized and ordered SOM lattice initialization strategies
were explored (Mahony, Hendrix et al., 2005). Although no
significant difference in motif-finding accuracy was observed
between the two strategies, the ordered initialization was
chosen for the smoothness it introduced into the SOM training
procedure and its theoretical stability.

An alternative approach to SOMBRERO initialization has
since been developed (Mahony, Golden, Smith, & Benos,
2005). Many known binding motifs exist in databases such
as TRANSFAC (Wingender et al., 1996), and the binding
preferences displayed in these motifs are not randomly
distributed. For example, if two transcription factors are related
evolutionarily, then frequently their corresponding DNA-
binding motifs also display some similarity. For particular
families of related transcription factors, so-called familial
binding profiles (FBPs) can be defined, and they represent the
Fig. 4. Timing information for SOMBRERO running with various numbers
of processors n on different dataset sizes. The points at which different SOM
lattice sizes are used are shown with dotted lines.

average or generalized binding preference within that family.
One of the current challenges in motif-finding application
development is to incorporate the knowledge provided by
such FBPs into methods that aim to find novel motifs in a
set of sequences. However, even the construction of FBPs is
problematic, with previous studies taking a manual approach to
clustering related PSSMs into generalized models (Sandelin &
Wasserman, 2004).

It has previously been demonstrated that incorporating
a motif as a “biasing prior” for a motif-finder based on
Expectation Maximization or Gibbs-sampling improves the
detection of other motifs related to the prior (Bailey &
Elkan, 1995; Sandelin & Wasserman, 2004). Foreknowledge
of the familial membership of an unknown motif is rarely
available, however, and incorporating an incorrect prior has a
detrimental effect on motif-finding performance. Current motif-
finding methods can only incorporate a single prior in a given
motif-finding run, and therefore the choice of biasing prior
is critical. However, the SOMBRERO lattice contains many
PSSM models, and thus the opportunity exists for multiple
priors to be used to initialize the lattice. One effective way
to order a set of known PSSMs into a structure suitable for
initializing and biasing SOMBRERO is to train another SOM
(with identical lattice dimensions) on the set of PSSMs and use
the final node states from that SOM as the initial SOMBRERO
node states.

4.2. The binding profile SOM

The following SOM training algorithm is used to
automatically organize a set of PSSM models into a number
of FBPs. Subsequently, the FBPs can be used as initial states
for the standard SOMBRERO algorithm. The main conceptual
difference between the following algorithm and Algorithm 1 is
that here PSSM models and not `-mers are to be clustered at
the nodes. The training algorithm for the binding profile SOM
(BP-SOM) proceeds as follows:

Algorithm 2 (The Binding Profile SOM).
1. The BP-SOM lattice size is set equal to the size required by

the SOMBRERO grid, and each node model m j is initialized
as a PSSM with random values.
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2. For each training set PSSM, xi (i = 1, . . . , N ):
2.1. xi is aligned to every SOM node model m j using the

alignment method described in Section 2.2.
2.2. The node w whose model mw has the best p-value

alignment score to xi is selected, and the PSSM xi is
assigned to that node.

3. Update step:
3.1. At each node j , all clustered PSSMs are aligned against

each other. Given the average p-value (pv) obtained
in comparisons of profile v to all other PSSMs at the
same node, the weight (Zv) of each PSSM is calculated
as Zv = 1 − pv . The PSSM with the highest Zv is
designated as the alignment positioning template.

3.2. At each node, a new binding profile is generated
according to the equation

m j (t + 1) =

N∑
i=1

align(xi,k · Zi,k · e−| j−k|
2/γ ) (8)

where align() is a function that aligns the columns of
each xi (clustered at node k) to the relevant alignment
positioning template at node j , and | j − k| is the
distance on the SOM grid between nodes j and k. The
Gaussian sharpness factor, γ , is defined as before, but
here δ ranges from 4 to 30 during training. The length of
the new model depends on the quality of the alignment.
Flanking columns with low information content (<0.4
bits) are excluded from the new model, to a minimum
model length of 8 columns.

4. The training process repeats from step 2 until convergence
(to a maximum of 100 cycles).

4.3. Combining the BP-SOM and SOMBRERO: Improved
motif-finding performance in artificial datasets

The BP-SOM algorithm results in an ordered grid of
FBP models that can be used as the initial states for a
SOMBRERO grid of equal size. The FBPs generated by the
BP-SOM will be of various lengths, so shortening or padding
is applied as appropriate in order to make the BP-SOM
PSSMs compatible with SOMBRERO’s length ` models. The
effect of incorporating prior knowledge into SOMBRERO’s
initialization is demonstrated here using various artificial
datasets. The artificial datasets were constructed using a third-
order Markov model of yeast intergenic sequence. The datasets
contained various instances of one of four different motifs:
the mammalian motifs CREB and E4BP4, and the yeast
motifs CSRE and GAL4 (each PSSM was procured from
TRANSFAC). For each motif, 200 datasets were constructed.
Each dataset contained sequences to a total sequence length of
between 1 and 10 kbp per dataset. A random number of the
relevant motif instances (the mean occurrence for each motif
was ∼15) was placed at random intervals in each dataset.

Three SOMBRERO initialization strategies are tested on the
artificial datasets: the original gradient-random initialization, a
completely random initialization, and an initialization based on
BP-SOM priors. For the cases where SOMBRERO uses a prior,
the prior refers to the end state of a BP-SOM that has been
previously trained on a selection of 257 mammalian-specific
PSSMs (taken from TRANSFAC and JASPAR).

Fig. 5 presents the results of the analysis, where the
percentage performance difference of each initialization
strategy is compared (with the gradient-random initialization’s
performance serving as the baseline). As in Section 3.2,
the performance is again defined as the harmonic mean of
sensitivity and specificity. There is little variation between
the average performance of the gradient random initialization
and the random initialization in any of the four datasets,
and this is in line with previous observations (Mahony,
Hendrix et al., 2005). However, the use of the prior
initialization improves motif-finding performance over the
other initialization strategies for the two motifs that are present
in the prior set (CREB & E4BP4), and the improvement
lasts consistently as the dataset size increases. As expected,
no improved performance is observed through the use of a
mammalian-specific prior for either the GAL4 or CSRE motif
datasets, as no related motifs are included in the prior dataset.
However, neither does the use of the mammalian-specific prior
initialization adversely affect performance when finding these
yeast motifs.

In conclusion, this test shows that the use of FBPs as priors
in the SOMBRERO algorithm can improve its performance
when the searched motifs are included in the FBPs, while it
does not decrease its performance when they are not.

4.4. Improved motif-finding performance in S. cerevisiae
regulatory regions

In order to determine SOMBRERO’s motif-finding perfor-
mance in real genomic datasets, a large-scale assessment was
carried out using datasets taken from the S. cerevisiae genome.
Harbison et al. have determined the genomic occupancy of
203 transcription factors (i.e. the intergenic regions bound by
each TF) under a variety of environmental conditions (Harbison
et al., 2004). Taking only high-confidence (P ≤ 0.001) location
information, and restricting interest to those binding sites that
are evolutionarily conserved in at least two other yeast species,
Harbison et al. defined precise binding locations for 102 tran-
scription factors.

The Harbison et al. data (available from http://jura.wi.mit.
edu/fraenkel/download) was converted into a form suitable for
assessing the accuracy of motif-finders. For each of the 77
transcription factors that have more than four high-confidence
binding locations recorded, the entire intergenic sequence that
encapsulates each recorded binding site was taken from the
yeast genome. Therefore, 77 datasets to a total sequence
length of 1.67 Mbp were constructed. MEME, AlignACE and
SOMBRERO (using both the gradient-random initialization
and a prior initialization based on a BP-SOM trained using
Harbison et al.’s set of 102 yeast motifs) were each run on
the datasets. SOMBRERO and AlignACE were run using
default settings. MEME was allowed to search both strands
for up to 20 motifs, each of which can occur zero or more
times in each sequence. AlignACE also requires an expected

http://jura.wi.mit.edu/fraenkel/download
http://jura.wi.mit.edu/fraenkel/download
http://jura.wi.mit.edu/fraenkel/download
http://jura.wi.mit.edu/fraenkel/download
http://jura.wi.mit.edu/fraenkel/download
http://jura.wi.mit.edu/fraenkel/download
http://jura.wi.mit.edu/fraenkel/download
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Fig. 5. The average percentage difference in performance of the random initialization and the prior initialization in comparison with the gradient-random
initialization’s performance (baseline) in various artificial datasets. The graphs plot the percentage change in average harmonic mean against dataset size (in
bp).
motif length, and the correct motif length was provided for
each case. SOMBRERO’s lattice size was chosen according
to the heuristic guidelines given in Section 3.2. In every
case, accuracy of motif-finding is judged in relation to the
best matching motif found in the top 20 results from each
method.

Every effort has been made to ensure that the comparison
between the various motif-finding programs is fair. However,
the conclusions from such comparisons should always be
interpreted with caution since the very nature of the algorithms
and the input parameters make such comparisons somewhat
“biased”. Furthermore, it should be noted that neither MEME
nor AlignACE allow priors to be used in the sense that
SOMBRERO allows. Therefore, the results of the comparisons
should serve only as a frame of reference. Finally, the high
stringency of Harbison et al.’s methodology means that while
each recorded binding site is highly likely to be bound in vivo,
there may also be an unknown number of other functional
binding sites present in each dataset. This should be particularly
noted when comparing each method’s false positive rates.

The results of the analysis are summarized in Table 1,
and are described in terms of average false negative (FN),
false positive (FP) and harmonic mean (F) across various
intervals of dataset size. In Table 1, the 77 datasets are
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Table 1
Summary of the performance of motif-finders in 77 yeast datasets

Dataset
size

Sets Ttl. size
(bp)

SOMBRERO (G.-R. Init.) SOMBRERO (Prior Init.) MEME AlignACE

Sites Avg.
FN

Avg.
FP

Avg.
F

Avg.
FN

Avg.
FP

Avg.
F

Avg.
FN

Avg.
FP

Avg.
F

Avg.
FN

Avg.
FP

Avg. F

40–85 kbp 16 885 019 1751 0.26 0.34 0.69 0.22 0.31 0.72 0.59 0.18 0.46 0.44 0.36 0.54
20–40 kbp 14 487 135 940 0.38 0.40 0.60 0.22 0.35 0.69 0.56 0.38 0.48 0.42 0.39 0.51
10–20 kbp 16 224 200 408 0.43 0.48 0.53 0.25 0.37 0.68 0.51 0.37 0.54 0.41 0.55 0.45
5–10 kbp 15 117 712 209 0.37 0.61 0.47 0.20 0.59 0.53 0.39 0.26 0.63 0.52 0.50 0.55
0–5 kbp 16 54 723 114 0.24 0.63 0.47 0.20 0.69 0.41 0.44 0.44 0.49 0.64 0.61 0.47
Total 77 1676 760 3289 0.33 0.43 0.62 0.24 0.41 0.67 0.60 0.29 0.51 0.52 0.31 0.57
arbitrarily grouped according to size. Across the entire 77
datasets, SOMBRERO incorporating a yeast-specific prior
has the best performance rate and lowest false negative
rate of any of the motif-finders, and the use of a prior
significantly improves upon the overall accuracy of the original
SOMBRERO initialization strategy. Complete performance
results for each of the 77 individual datasets is available
in Supplementary Table 1 (http://biodev.hgen.pitt.edu/services.
html). SOMBRERO incorporating a yeast-specific prior has the
best performance rate in 37 of the 77 individual datasets, while
SOMBRERO without a prior performs best in 10, MEME in 15
and AlignACE in 15 datasets.

5. PSSM classification using self-organizing trees

The BP-SOM described in Section 4.2 is clearly unsuitable
for visualizing familial relationships between a set of PSSMs.
The output lattice does not suggest the form of the relationship
between any two nodes, the number of clusters (or FBPs) found
by the SOM is dependant on the lattice size, and empty nodes
representing no PSSM family often remain on the lattice at
the end of training. The BP-SOM is thus useful only in the
context of organizing known DNA-binding motifs into a data
structure that can initialize SOMBRERO. However, there may
be a biological interest in determining relationships between
motifs and motif families on the basis of sequence similarity
and divergence. Such a study would ideally make use of a tree
formalism (as commonly implemented in phylogeny studies) as
opposed to the 2-D lattice offered by the SOM. In this section,
the Self-Organizing Tree Algorithm (SOTA (Dopazo & Carazo,
1997)) is used to assess the applicability of self-organizing trees
to the study of familial relationships between motifs.

The SOTA was first described as a growing cell structure
approach to automatically constructing a phylogenetic tree for
a set of protein sequences (Dopazo & Carazo, 1997). Here the
SOTA is applied to the hierarchical clustering of PSSMs, and
therefore the SOTA nodes and cells each contain a PSSM that
evolves over the training period to represent a PSSM or set
of PSSMs from the input dataset. The topology of the SOTA
neural network takes the form of a binary tree. The tree begins
with two external elements, denoted as cells, connected by an
ancestor, named a node. Training proceeds similarly to the
SOM algorithm, but at the end of a training cycle the tree
grows by splitting one cell. The tree stops growing when a
predefined threshold has been reached, or when every cell has
a single datapoint clustered within (as in our usage). The novel
algorithm used to cluster PSSMs using SOTA in this study is
summarized below and will henceforth be referred to as the
“binding profile SOTA” (BP-SOTA).

Algorithm 3. The binding profile SOTA

1. Two cells, and a connecting node, are initialized as random
value PSSMs m j .

2. For each input PSSM, xi (i = 1, . . . , N ):
2.1. xi is aligned to every cell on the tree (m j ) using the

alignment method described in Section 2.2.
2.2. The winning cell is chosen as the cell w whose model

mw has the best p-value score to xi .
2.3. xi is clustered at cell w.

3. The update step only applies to cells, their immediate
ancestor node (the “mother”) and the other cell descended
from the same mother (the “sister”). New models are
generated according to

m j (t + 1) = m j (t) +

N∑
i

align(xi,k · Zi,k · η j ), (9)

where the notation follows that of the BP-SOM, and the
learning rate η j = αi (1 − t/Mt ), where αsister = 1/2,
αmother = 1/8 and αother = 0.

4. The training process repeats from step 2 until Mt cycles are
reached (Mt = 50).

5. Growing phase. If the algorithm has not yet converged, the
cell with the lowest weight (Z j , defined in Algorithm 2) is
split, giving rise to two (initially) identical descendants.

6. Training repeats from step 2 until convergence. Convergence
is defined here as the point where every cell contains one
and only one PSSM, although training can be stopped at any
point during the growth of the tree.

The application of the SOTA to the study of PSSMs allows
the full set of similarity relationships between various PSSMs
to be represented on a binary tree structure. As originally noted
by Sandelin and Wasserman, familial binding profiles can be
used to help predict the protein structural class for a novel motif
(Sandelin & Wasserman, 2004). The tree created by the BP-
SOTA is also suitable for classifying newly discovered motifs.
The classification power of the tree was measured using a leave-
one-out cross-validation study; each of the PSSMs in a JASPAR
subset (which includes only those PSSMs belonging to families
represented by five or more members in the JASPAR database:

http://biodev.hgen.pitt.edu/services.html
http://biodev.hgen.pitt.edu/services.html
http://biodev.hgen.pitt.edu/services.html
http://biodev.hgen.pitt.edu/services.html
http://biodev.hgen.pitt.edu/services.html
http://biodev.hgen.pitt.edu/services.html
http://biodev.hgen.pitt.edu/services.html
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Fig. 6. Classification accuracy of BP-SOTA as a function of the number of cells
on the tree.

71 PSSMs belonging to 11 families) is removed in turn, and
the BP-SOTA is run on the remaining 70 profiles. The left-
out PSSM is compared to all cells on a given level of the
tree, and classification power is measured by calculating the
percentage of members of the most similar cell that are of
the same structural family as the test PSSM. Fig. 6 shows the
average classification power measured for each level of growth
in the tree (the 70 cell level represents completion of the tree
construction; each cell represents a single PSSM).

As can be seen from the figure, the classification power of
the BP-SOTA is 86%, which is equivalent to the prediction
power of Sandelin and Wasserman’s manually constructed
FBPs in the same dataset (87%). Interestingly, the tree does not
have to be fully formed for this accuracy to be obtained. The
accuracy limit is reached when the BP-SOTA tree consists of
only 54 cells, which suggests an underlying familial structure
has been found at this point. Perfect accuracy of PSSM
classification may be unobtainable, as the binding preferences
of some members of a TF family might not be similar to other
members of the same family.

6. The integrated SOMBRERO motif-finding platform

A complete motif-finding platform can be defined by
combining the three self-organizing neural networks described
above. As described in Section 4.2, the BP-SOM can be used
to provide a source of prior knowledge for the SOMBRERO
motif-finder. As a consequence of SOMBRERO repeating
the motif search over various values of `, slightly different
instances of the same motif may be discovered and reported
as distinct motifs. The third subsystem, the BP-SOTA, can
be employed in order to point out similarities between the
discovered motifs to the user.

The functionality of the complete three-level SOMBRERO
motif-finding system is briefly demonstrated here. In this
demonstration, SOMBRERO aims to identify motifs in an
artificial dataset, generated using a third-order Markov model
of yeast intergenic DNA. Within the artificial dataset are
implanted 10 TFBSs for each of three TFs: GAL4, NF-κB and
CREB. SOMBRERO’s grid is initialized using a BP-SOM that
has been previously trained on a collection of 257 mammalian
PSSMs taken from the TRANSFAC and JASPAR databases.
The collection includes the NF-κB and CREB PSSMs, but not
the GAL4 motif (nor is any motif similar to GAL4 present in
the mammalian dataset). A portion of the trained BP-SOM is
displayed in Fig. 7(a). Node 2, 7 contains a FBP that represents
seven members of the REL family of TFs, including the NF-κB
motif.

The final state of the BP-SOM is used to initialize a 20 × 10
SOMBRERO grid. The input sequence dataset of 2000 bp is
divided into `-mers and clustered on the grid. Training repeats
for all even values of ` between 8 and 18. The grid portion in
Fig. 7(b) shows some final nodes states on a SOMBRERO grid
of ` = 12. Note that the motif in node 2, 7 has changed very
little from the initial state. The NF-κB motif is present in the
input dataset, and thus it reinforces the presence of the motif at
node 2, 7 on the SOMBRERO grid. Contrast this with node 1, 8,
whose motif has changed drastically from the initial state, due
to the non-presence of the relevant motif in the input sequences.

The significance of every motif existing in the final
SOMBRERO grids is calculated. Occurrences of the same
motif may have been found in separate SOMBRERO grids that
used different values of `. In order to illustrate the relationships
between various motifs for the user, the top 15 scoring motifs
are clustered using the BP-SOTA. The resulting tree is shown
in Fig. 7(c). The BP-SOTA properly separates the motifs on the
basis of the represented transcription factor.

7. Conclusion

Self-organizing neural networks have been previously
applied to the study of DNA sequence data. For example,
the SOM and related algorithms have been applied in the
context of codon usage and genome signature analysis (Abe,
Kanaya, & Kinouchi, 2002, 2003; Hayashi, Abe, & Sakamoto,
2005; Kanaya, Kinouchi, & Abe, 2001; Wang, Badger,
& Kearney, 2001), gene prediction (Gorban, Zinovyev, &
Popova, 2003; Gorban, Zinovyev, & Wunsch, 2003; Mahony,
McInerney, Smith, & Golden, 2004), endogenous retrovirus
clustering (Oja, Sperber, Blomberg, & Kaski, 2004, 2005),
various classification problem (Aires-de-Sousa & Aires-de-
Sousa, 2003; Naenna, Bress, & Embrechts, 2003; Wang,
Azuaje, & Black, 2004), and even the efficient design of DNA
microarrays for SNP analysis (Douzono, Hara, & Noguchi,
2001).

In the domain of motif-finding, Arrigo et al. attempted to
use a SOM to find “singular” or unusual patterns in promoter
sequences by using the Tanimoto measure to find the DNA
sequence most distant from the final SOM weight vectors
(Arrigo, Giuliano, Scalia, Rapallo, & Damiani, 1991). The
patterns thus discovered were usually GC-rich, but this had
probably more to do with the data representation method (based
on the conversion of bases to ordinal numbers) than with the
regulatory potential of the sequences. By incorporating PSSMs
as node models, the SOMBRERO motif-finder described in
Section 3 offers a much more robust approach to finding
regulatory motifs, and allows a SOM-based feature detector to
outperform methods based on statistical learning theory.
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Fig. 7. Illustration of the cooperation between three self-organizing neural networks in the complete motif-finding platform.
Section 4 described a SOM-based approach to automatically
constructing familial binding profiles. Cartharius et al. also
used the SOM to cluster known PSSMs into families for use
with their MatInspector TFBS prediction program (Cartharius
et al., 2005). In their case, however, the PSSM were first
converted into vectors of di-, tri- and tetra-nucleotide frequency
within the matrix. The short length of most PSSMs means that
the frequency vector representation will suitably capture the
features of the matrices, but alignment methods that do not
require vectorization of the PSSMs are preferable. Through
the use of accurate PSSM alignment methods, therefore, the
BP-SOM is expected to automatically construct FBPs more
accurately than the approach of Cartharius et al.

The BP-SOM was shown to be an effective means of
incorporating prior biological knowledge into the SOMBRERO
motif-finder. The provided examples demonstrate that the use
of prior biological knowledge with SOMBRERO gives the
type of improved performance that is desired; motif-finding
performance is improved if the relevant motif is present in
the prior, and performance is not negatively affected for those
motifs or structural classes that are not represented in the prior.
SOMBRERO is currently the only motif-finder that facilitates
the incorporation of a large set of prior biological knowledge.
Finally, a self-organizing tree algorithm was shown to be an
effective classifier of structural class for novel binding motifs. It
will be interesting in the future to compare the results obtained
with SOTA with the methods that have been used in the past
in the study of protein evolution, such as UPGMA (Michener
& Sokal, 1957) and neighbour-joining (Saitou & Nei, 1987), as
well as probabilistic approaches such as maximum parsimony
(Fitch, 1971) and maximum likelihood (Felsenstein, 1973). The
lack of large-scale DNA-binding motif datasets means that the
study of familial binding profiles is in its infancy. However, as
shown in this work, self-organizing neural networks have wide
applicability to the study of DNA-binding motifs and familial
binding profiles, and will play an important role in their future
study.
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