
“bti1025” — 2005/6/10 — page 283 — #1

BIOINFORMATICS Vol. 21 Suppl. 1 2005, pages i283–i291
doi:10.1093/bioinformatics/bti1025

Improved detection of DNA motifs using a
self-organized clustering of familial binding
profiles

Shaun Mahony1,∗, Aaron Golden1,2, Terry J. Smith1 and
Panayiotis V. Benos3

1National Centre for Biomedical Engineering Science, NUI Galway, Galway, Ireland,
2Department of Information Technology, NUI Galway, Galway, Ireland and
3Department of Human Genetics, Graduate School of Public Health, University of
Pittsburgh Cancer Institute and Department of Computational Biology, School of
Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA

Received on January 15, 2005; accepted on March 27, 2005

ABSTRACT
Motivation: One of the limiting factors in deciphering
transcriptional regulatory networks is the effectiveness of
motif-finding software. An emerging avenue for improving
motif-finding accuracy aims to incorporate generalized bind-
ing constraints of related transcription factors (TFs), named
familial binding profiles (FBPs), as priors in motif identific-
ation methods. A motif-finder can thus be ‘biased’ towards
finding motifs from a particular TF family. However, current
motif-finders allow only a single FBP to be used as a prior in a
given motif-finding run. In addition, current FBP construction
methods are based on manual clustering of position specific
scoring matrices (PSSMs) according to the known structural
properties of the TF proteins. Manual clustering assumes that
the binding preferences of structurally similar TFs will also
be similar. This assumption is not true, at least not for some
TF families. Automatic PSSM clustering methods are thus
required for augmenting the usefulness of FBPs.
Results: A novel method is developed for automatic cluster-
ing of PSSM models. The resulting FBPs are incorporated
into the SOMBRERO motif-finder, significantly improving its
performance when finding motifs related to those that have
been incorporated. SOMBRERO is thus the only existing
de novo motif-finder that can incorporate knowledge of all
known PSSMs in a given motif-finding run.
Availability: The methods outlined will be incorporated into
the next release of SOMBRERO, which is available from
http://bioinf.nuigalway.ie/sombrero
Contact: shaun.mahony@nuigalway.ie.

1 INTRODUCTION
Finding cis-regulatory motifs in DNA sequences remains
a fundamental problem in computational biology. Many

∗To whom correspondence should be addressed.

approaches to the solution of the problem exist, with methods
based on statistical learning theory being particularly popular.
For example, maximum likelihood estimation (e.g. MEME
(Bailey and Elkan, 1994)) and Gibbs sampling [e.g. Alig-
nACE (Hughes et al., 2000), Co-Bind (GuhaThakurta and
Stormo, 2001) and BioProspector (Liu et al., 2001)] are widely
used. Alternative motif identification methods have also been
proposed, including word enumeration, winnowing and dic-
tionary construction-based methods (Bussemaker et al., 2000;
Gupta and Liu, 2003; Pevzner and Sze, 2000; Rigoutsos and
Floratos, 1998). However, a recent survey indicates that the
effectiveness of existing methods is still in need of much
improvement (Tompa et al., 2005).

Phylogenetic footprinting techniques are obviously one
avenue for improving the accuracy and effectiveness of
motif-finders (Blanchette and Tompa, 2003; Lenhard et al.,
2003; Loots et al., 2002; McCue et al., 2002). However,
these approaches only reduce the amount of sequence to be
analysed, and do not improve the accuracy of the underlying
motif-finding algorithm, which remains the core issue.

A recently proposed alternative avenue for improving motif
detection aims to change the de novo motif detection prob-
lem from “an unsupervized learning problem into a semi-
unsupervized learning problem that makes substantial use of
existing biological knowledge” (Xing and Karp, 2004). The
emerging methods are directed by the realization that great
potential exists for improving motif recognition by modelling
and exploiting the regularities that are shared by structur-
ally related transcription factors. In their MotifPrototyper
framework, Xing and Karp use hidden Markov–Dirichlet mul-
tinomial models to represent the structural features of a given
family of related transcription factors (TFs). The authors show
how a mixture model built on top of multiple structural mod-
els can facilitate a Bayesian estimation of the position specific
scoring matrix (PSSM) of a novel motif, and therefore known
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biological information is used to improve the performance of
a motif-finder.

While Xing and Karp use knowledge of structurally sim-
ilar DNA-binding motifs to improve a motif-finder, Sandelin
and Wasserman (2004) aim for the same goal by using align-
ments of similar DNA-binding motifs. The latter demonstrate
an effective way of representing the constrained binding site
diversity within a family of structurally related transcrip-
tion factors by building familial binding profiles (FBPs) that
are in effect the ‘average’ binding motif for a set of related
transcription factors. Sandelin and Wasserman suggest two
applications of their familial binding profiles; first, in improv-
ing motif-finding detection, and second, in allowing the
structural classification of a newly discovered DNA-binding
motif. They successfully demonstrate both applications in
their study.

Sandelin and Wasserman’s FBPs are manually construc-
ted from PSSMs for which the structural class of the cor-
responding TF is known (11 TF families in their study).
Lack of structural knowledge for a large number of TFs
precludes the extended manual construction of FBPs, and
therefore methods for automatic clustering of similar PSSMs
are needed. Such methods should have the ability to con-
struct FBPs without prior knowledge of the structural classes
of constituent PSSMs. In the current study, we show how an
unsupervized neural network method, the self-organizing map
(SOM), can be effectively applied to the automatic clustering
of PSSMs.

One application of FBPs is their use as priors in motif identi-
fication algorithms (Sandelin and Wasserman, 2004). Indeed,
Sandelin and Wasserman demonstrated that the motif-finding
performance of both the Gibbs Motif Sampler (Thompson
et al., 2003) and ANN-Spec (Workman and Stormo, 2000)
are dramatically improved when an appropriate FBP is incor-
porated as a prior bias in these methods. If binding sites that
are similar to the FBP prior are present in the input sequences,
the motif-finders are effectively biased intentionally towards
finding the correct pattern. However, this enhancement to tra-
ditional motif-finders is critically dependant on the correct
choice of biasing FBP. The inclusion of an incorrect prior can
result in the failure of the motif-finder to detect sites for a
different TF. Currently, traditional motif-finding methods can
only incorporate one FBP as a prior during any given motif-
finding run. In effect, the TF that is acting through sites in
the input sequences (or at least its functional class) must be
known in advance, and this is not usually possible in typical
de novo motif-finding experiments. The application of FBPs
as priors for motif-finding methods would therefore seem to
have limited applicability.

However, our recently described motif-finding algorithm,
named SOMBRERO (Mahony et al., 2005), has the poten-
tial to bypass the problems that other methods face when
incorporating FBPs as priors. SOMBRERO, based on the
self-organizing map (SOM) neural network, can find a set of

multiple distinct motifs for an input dataset in a truly simul-
taneous manner (see Methods for details). As we demonstrate
in this study, the nodes on SOMBRERO’s neural grid can be
initialized to correspond to a complete set of familial bind-
ing profiles through the use of a SOM clustering of PSSMs.
This biases certain nodes towards finding particular TF bind-
ing sites. If a motif that is similar to a FBP present on the
SOM grid is also present in the input sequences, the corres-
ponding binding sites will be attracted to a particular node and
the motif will remain conserved throughout SOM training. On
the other hand, if a motif is not present in the input sequences,
corresponding binding sites will not be available to reinforce
the existence of the motif on the grid, and therefore the motif
will ‘fade out’ during training until it is not present on the grid
at completion. We demonstrate that the use of a complete set
of FBPs as priors for SOMBRERO acts as an effective way to
improve the performance of motif detection, without biasing
against finding motifs that are not represented in the prior.

2 METHODS
2.1 Algorithm for profile comparison
In this study, Pietrokovski’s (1996) methods for aligning
two PSSMs are used, but are combined with Sandelin and
Wasserman’s method for calculating the P -value of an align-
ment. Specifically, column-to-column comparisons are made
using Pearson’s correlation coefficient:

r(C, D) =
∑T

b=A (Cb − C̄) · (Db − D̄)√∑T
b=A (Cb − C̄)2 · ∑T

b=A (Db − D̄)2

where Cb and Db are the probability values of base b in
columns C and D, respectively, and C̄ and D̄ are the means
of the values in columns C and D, respectively. A modified
Smith–Waterman algorithm (Smith and Waterman, 1981) is
used to find optimal local alignments of PSSM pairs. In the
current work, no gaps were allowed in the alignment.

In order to compare alignments of different widths,
the method for the calculation of empirical P -values
described by Sandelin and Wasserman is followed exactly.
The method involves extensive analysis with simulated
PSSMs to determine the likelihood of any score given
the lengths of aligned matrices. The simulated PSSMs
reflect the properties of the PSSMs in the JASPAR data-
base (Sandelin and Wasserman, 2004). The construction
of a dataset of 10 000 simulated matrices follows the
instructions on Sandelin and Wasserman’s website (http://
forkhead2.cgb.ki.se/jaspar/additional/index.htm).

2.2 A SOM for clustering PSSMs
The SOM is an unsupervized neural network algorithm
(Kohonen, 1995). The general structure of the SOM is a 2D
lattice of interconnected nodes. The nodes contain models
(typically n-dimensional vectors) that are adjusted during the
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training process in order to represent features of the input
space. At the end of each training iteration, new node mod-
els are generated by averaging the input datapoints clustered
at that node, as well as including contributions from neigh-
bouring nodes. The training algorithm results in similar input
datapoints being clustered at a given node, and similar nodes
will be located close to one another on the lattice. Because of
this property of (local) topological conservation, the SOM is
often used to visualize high-dimensional data on a 2D display,
but the clustering mechanism also makes the SOM an effective
means of finding common features in a dataset. Typical applic-
ations of the SOM in biosequence analysis include the study
of codon usage (Abe et al., 2003; Mahony et al., 2004; Wang
et al., 2001) and the clustering of similar protein sequences
(Kohonen and Somervuo, 2002).

In the current application of the SOM, the data-space to be
explored will be a set of PSSMs. Therefore, PSSMs are used
as models at each SOM node. The training algorithm for the
SOM of PSSMs, henceforth referred to as the ‘binding profile
SOM’ (BP-SOM), proceeds as follows:

(1) The BP-SOM lattice size is chosen. In general, the
choice of BP-SOM lattice size is arbitrary. How-
ever, when the BP-SOM is used in conjunction with
SOMBRERO (see below), the BP-SOM lattice size
must be equal to the SOMBRERO lattice size. The
choice of SOMBRERO’s lattice size is dependant on
the size of the dataset being analysed and will be dis-
cussed in Section 2.3. Each node modelmj is initialized
as a length 12 PSSM with random values.

(2) For each PSSM, xi , (i = 1, . . . , N):
2.1 xi is aligned to every SOM node model mj using

the alignment method described in Section 2.1
above.

2.2 The node w whose model mw has the best P -value
score to xi is selected and xi is clustered at
node w.

(3) Update step:
3.1 At each node j , all clustered members are aligned

to give the new weighted alignment matrix Aj .
The weight (Zv) of each member is calculated
by the average P -value (Pv) obtained from com-
parisons of profile v with all other members of
the same node: Zv = 1 − Pv . Following the
FBP construction procedure outlined by Sandelin
& Wasserman (2004), the node member with
the highest Zv is designated as the alignment
positioning template.

3.2 New models are generated according to the
equation:

mj(t + 1) =
N∑
i

align(xi,k × Zi,k × e−|j−k|2/γ )

where align( ) is an alignment function that aligns
the columns of each xi (clustered at node k) to
the alignment positioning template at node j , and
|j − k| is the distance on the SOM grid between
nodes j and k. The measure of sharpness γ of
the Gaussian factor is defined as γ = 1/(log(δ)),
where δ ranges from 4 to 30 during training. This
Gaussian neighbourhood factor ensures that adja-
cent nodes will strongly contribute to each other
initially, but end up contributing little to each
other at the end of training. The length of the new
model depends on the quality of the alignment.
Flanking columns with low information content
(<0.4 bit) or insufficient sequence depth (at least
half of the PSSMs clustered at node j have to con-
tribute) are excluded from the new model, up to
a minimum model length of eight. The length of
each node’s FBP model therefore changes during
the training process, and this is possible because
of the length independent nature of the P -value
score. Finally, each mj is normalized.

(4) The training process repeats from step 2 for 100
training cycles.

2.3 SOMBRERO
In SOMBRERO’s algorithm, the nodes are PSSM models,
but as the input space in the motif-finding domain is typic-
ally a set of DNA promoter sequences, the input datapoints to
be clustered on the SOM are �-mer sequence strings. Train-
ing proceeds by assigning �-mers to various nodes on the
lattice using a log-likelihood similarity measure, and model
updates are carried out that incorporate contributions from
neighbouring nodes. At the completion of the training process,
SOMBRERO’s nodes represent a complete set of motif fea-
tures present in the input dataset. Training can be repeated over
various values of � in order to find motifs of different lengths.

In order to identify potential transcription factor binding
sites (TFBS) motifs in the complete set of motif features, a
third-order Markov chain-based model (of the intergenic DNA
in the genome being studied) is used to generate a set of ran-
dom datasets. Using these simulated datasets, the expected
number of matches to each node’s motif is found, and thus
the motifs are ranked in terms of significance in a manner
similar to that used by Sinha and Tompa (2002). Motifs that
represent repetitive chains of DNA are filtered out at this stage
using a suitable motif complexity threshold. Complete details
of the SOMBRERO algorithm, including the simulation pro-
cedure and the complexity score, are described in our recent
publication (Mahony et al., 2005).

The parameters used by SOMBRERO in the current study
are mostly default settings. Specifically, SOMBRERO is
run for 100 training iterations, using a third-order Markov
background model of the organism under examination, and
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training repeats to find motifs between lengths 8 and 22 bp.
The size of the SOM lattice is scaled automatically with the
input dataset size. According to previous tests, the optimum
motif-finding performance of SOMBRERO can be obtained
by keeping the ratio of lattice nodes to input dataset size
roughly in the order of one node to 10 bp (Mahony et al.,
2005). Applying this approximate ratio, the following SOM
sizes were used in this study; 10 × 10 nodes for datasets in
the interval 0–1999 bp, 20 × 10 nodes for the interval 2000–
3999 bp, 30×15 nodes for the interval 4000–7999 bp, 40×20
nodes for the interval 8000–12499 bp and 50 × 25 nodes for
datasets >12500 bp.

In the current study, three lattice initialization strategies
were tested in order to determine how SOMBRERO’s motif-
finding performance is affected by such choices. The first
method is the gradient random initialization (Mahony et al.,
2005), which results in a grid that is biased towards mono-
nucleotide distributions at each corner, with gradients of
preference in the intervening nodes. The second method eval-
uated in this study is a standard random initialization of the
nodes. The third initialization method is named the ‘prior ini-
tialization’, and is a strategy that uses the final models that
result from clustering known PSSMs using a BP-SOM as
described in Section 2.2. In the latter case, the SOMBRERO
lattice begins the training process with various nodes biased
towards finding particular TF binding motifs. When using a
BP-SOM to bias a SOMBRERO lattice, the lattice sizes obvi-
ously need to be equivalent. In order to make the BP-SOM
models compatible with the length � SOMBRERO models,
only the � most informative concurrent columns in each BP-
SOM node model are used. Padding, using columns of neutral
bias, is used if the BP-SOM model is of a length less than �.

2.4 Training datasets
JASPAR (Sandelin et al., 2004), the non-redundant set of
high-quality transcription factor binding matrices (TFBM),
was used in this study. A subset of 71 JASPAR PSSMs,
defined by Sandelin and Wasserman as those PSSMs belong-
ing to families represented by five or more members in
JASPAR (and excluding zinc finger motifs), is used in vari-
ous contexts. In this study, three different PSSM datasets
are used to train BP-SOMs as priors for SOMBRERO. The
three collections are: (1) a selection of 257 mammalian-
specific PSSMs taken from the JASPAR and TRANSFAC
databases, (2) the entire set of yeast specific PSSMs contained
in the Saccharomyces cerevisiae Promoter Database (SCPD;
http://cgsigma.cshl.org/jian/) and (3) a set of 75 Drosophila-
specific PSSMs constructed by Dan Pollard from a DNAse I
footprint database (Bergman et al., 2005), and available from
http://rana.lbl.gov/∼dan/matrices.html.

2.5 Evaluation datasets
Both artificial and real sequence datasets are used to eval-
uate the performance of various motif-finders in this study.

The artificial datasets were constructed using a third-order
Markov model of yeast intergenic sequence. The datasets con-
tained various instances of one of four different motifs; CREB,
E4BP4, MIG1 and GAL4 (each PSSM was procured from
TRANSFAC). For each motif, 80 datasets were constructed.
Each dataset contained sequences to a total sequence length
between 1 and 8 kb per dataset. A random number of the rel-
evant motif instances (mean occurrences for each motif was
∼15) were placed at random intervals in each dataset.

Ten yeast genomic sequence sets were collected from the
SCPD database. The selection of sequence sets is based on
there being at least a total of four motif instances annotated
in each set. Each sequence set consists of multiple yeast pro-
moter regions, each region at least 500 bp long and containing
on either strand a number of occurrences of a predominant
motif (and also possibly other minor motifs) as specified by
the name of the dataset (Table 1, where the ‘bp’ column gives
the size of each sequence set, and the ‘sites’ column gives the
number of known motif instances in each set).

A dataset of Drosophila regulatory regions is also used in
the present study. The set contains 19 regulatory regions of
9 Drosophila genes (Berman et al., 2002) that harbour bind-
ing sites for the TFs Bicoid (bcd), Caudal (cad), Hunchback
(hb), Knirps (kni) and Krüppel (Kr). The total size of the
Drosophila dataset is 22 535 bp.

The (real) yeast and Drosophila genomic sequence data-
sets have been used previously by ourselves and others to test
the accuracy of motif-finder algorithms (Mahony et al., 2005;
Xing et al., 2004).

2.6 MEME and AlignACE
We compared the performance of SOMBRERO (with and
without priors) to MEME (Bailey and Elkan, 1994) and
AlignACE (Hughes et al., 2000). Every effort has been
made to ensure that the comparison between the various
motif-finding programs is fair. However, we understand
that the conclusions from such comparisons should always
be interpreted with caution since the very nature of the
algorithms and the input parameters make such comparis-
ons somewhat ‘biased’. Furthermore, it should be noted that
neither MEME nor AlignACE allow priors to be used in the
sense that SOMBRERO allows. Therefore, the results of the
comparisons should serve only as a frame of reference.

MEME is run using its default parameters, except for allow-
ing the search of both strands for up to 20 motifs, each of which
can occur zero or more times in a sequence. AlignACE is run
online (http://atlas.med.harvard.edu/cgi-bin/alignace.pl) with
default parameters, which are nearly identical to those of
MEME, except that the motif length needs to be specified.
In all AlignACE runs, the correct motif length was specified.

In every case, accuracy of motif-finding is judged in relation
to the best matching motif found in the top 20 results from each
method. We chose to examine the top 20 motifs instead of
only the absolute top motif as in other studies (Tompa et al.,
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2005), because sometimes many of the top scoring motifs
consist of slight variations of the same ‘dominant’ motif in
the set. Examining the top 20 motifs is also consistent with
the biological usefulness of such algorithms (biologists almost
never limit their testing to the absolute topmost prediction).

3 RESULTS
3.1 Clustering PSSMs using the SOM
As a demonstration of the clustering power of the SOM, a
5 × 4 node BP-SOM was trained on the 71 member JASPAR
subset using the algorithm outlined in Section 2.2. The final
states of the SOM nodes are shown in Figure 1 (high qual-
ity figure available as supporting information; http://bioinf.
nuigalway.ie/ISMB2005). Figure 1(b) shows the names of
the PSSMs (including family names) that are clustered at
each node at the end of training, and therefore contribute to
the corresponding final motifs. A high degree of clustering
according to familial membership can be observed in the
nodes. Figure 1(a) shows the motifs that correspond to the
final PSSM clustering on the SOM, and should be com-
pared with the 11 familial binding profiles described by
Sandelin and Wasserman (http://forkhead2.cgb.ki.se/jaspar/
additional/fbs.htm). A high degree of similarity exists between
certain nodes and particular FBPs, for example, the Sandelin
and Wasserman REL family FBP and node (3, 0), or the
Sandelin and Wasserman HMG family FBP and node (2, 2).

3.2 Using familial binding profiles as priors for
SOMBRERO: improved performance in
artificial sequence data

Given that the BP-SOM has been demonstrated to automatic-
ally cluster PSSMs according to familial binding constraints,
we are now interested in using the familial binding profiles
thus generated to improve the discovery of transcription factor
binding sites. This can be achieved by incorporating the end
state of a BP-SOM that has been trained on a dataset of known
PSSMs as the starting state for SOMBRERO (see Methods).

In this section, the performance of three SOMBRERO ini-
tialization strategies are compared when applied to artificial
sequence data (described in Section 2.4). Three SOMBRERO
SOMs (lattices sized according to the dataset size, as
explained in Section 2.3) are trained on each of the artifi-
cial datasets, where each SOM uses a different initialization
strategy (gradient random, standard random and BP-SOM pri-
ors). For the cases where SOMBRERO uses a prior, the prior
refers to the end state of a BP-SOM that has been previously
trained on a selection of 257 mammalian-specific PSSMs.

Figure 2 collates the results of this analysis. Each of the
graphs shows the average performance of each initialization
strategy in the datasets, measured with the harmonic mean (F)
of sensitivity (SN) and specificity (SP):

F = 2(SN · SP)/(SN + SP).

Fig. 1. Clustering 71 JASPAR PSSMs with a 5 × 4 SOM.

The value of F varies between 1, representing perfect recall
of the true motif instances with no false positive predictions,
and 0, representing no partially correct prediction found for
the motif.

As can be observed from Figure 2, there is little variation
between the average performance of the gradient random
initialization and the random initialization in any of the
four datasets, and this is in line with previous observations
(Mahony et al., 2005). However, the use of the prior initial-
ization improves motif-finding performance over the other
initialization strategies for the two motifs that are present
in the prior set (CREB and E4BP4), and the improvement
lasts consistently as the dataset size increases. As expec-
ted, no improved performance is observed through the use
of a mammalian-specific prior for either the GAL4 or MIG1
motif datasets, as neither motif is included in the prior data-
set. However, neither does the use of the mammalian-specific
prior initialization adversely affect performance when find-
ing these yeast motifs, and the prior initialization performs
similarly to the random initializations throughout these two
datasets. This example therefore demonstrates that the use of

i287

http://bioinf
http://forkhead2.cgb.ki.se/jaspar/


“bti1025” — 2005/6/10 — page 288 — #6

S.Mahony et al.

Fig. 2. SOMBRERO’s performance in artificial sequence datasets
using various initialization strategies. The graphs plot the average
harmonic mean values (F) of each initialization strategy against data-
set size (in bp). The motifs CREB and E4BP4 are included in the
PSSM dataset used in the prior initialization, but the motifs MIG1
and GAL4 are not.

prior biological knowledge with SOMBRERO gives the type
of improved performance that is desired; motif-finding per-
formance is improved if the relevant motif is present in the
prior, and performance is not negatively affected for those
motifs or structural classes that are not represented in the
prior.

3.3 Improved SOMBERO performance in
S.cerevisiae regulatory regions

The performance of a selection of motif-finders is evalu-
ated using 10 real genomic datasets taken from S.cerevisiae
(described in Section 2.4). SOMBRERO’s performance using
the original, gradient random initialization, and using the prior
initialization (which uses an appropriately sized BP-SOM

previously trained on yeast specific PSSMs) is compared with
the performance of MEME and AlignACE in the datasets.

The results of the analysis are displayed in Table 1. The
results in each dataset are described in terms of false-negative
rates (FN), false-positive rates (FP) and harmonic mean (F). It
can be seen from the table that the use of the prior initialization
allows SOMBRERO to gain the best performance rate in 8 of
the 10 datasets. An entire collection of yeast specific motifs
has therefore been used as prior knowledge in order to improve
the performance of a motif-finder in real genomic data.

3.4 Improved SOMBRERO performance in
Drosophila regulatory regions

In order to demonstrate the advantages of using priors in a
large genomic dataset, and also to show that SOMBRERO’s
ability to predict multiple distinct motifs is not affected by
the use of a prior, a selection of motif-finders were tested
on a large (22 535 bp) set of Drosophila regulatory regions.
Again, the original SOMBRERO initialization, MEME and
AlignACE were compared with SOMBRERO incorporating a
set of priors. SOMBRERO was run using a 50×25 node SOM,
and the prior used was a 50 × 25 node BP-SOM previously
trained on a set of 75 Drosophila-specific PSSMs.

The results of the comparison are shown in Table 2. Again,
the results are presented in terms of FN, FP and F. From the
table, it can be seen that no method can be said to have effect-
ively detected the kni binding motif. However, for the other
four motifs, the use of a prior with SOMBRERO leads to
the greatest performance rates. The use of a prior gives a
significant increase in performance in finding the bcd and
Kr motifs. Overall, the use of the prior initialization yields
the same performance as the gradient random initialization
in finding the cad and hb motifs. It should be noted, how-
ever, that the gradient random initialization of the original
SOMBRERO program results in nodes that are biased towards
mono-nucleotide motifs. Since cad and hb are both motifs that
contain constraints for the binding of a run of ‘T’s, the ori-
ginal gradient random initialization may have contained an
inadvertent ‘prior’ that is biased towards finding cad and hb.

4 DISCUSSION
The use of the automatic clustering method presented in this
work can be viewed as a natural progression in the study of
familial binding profiles. We have expanded the applicabil-
ity of familial binding profiles as prior knowledge for motif
identification in a significant way through the use of the SOM.
We demonstrated that the SOM can be used to cluster PSSMs
on a 2D grid. In general, the resulting grid of FBPs agreed
with the evolutionary classification of the TFs, although dif-
ferences were observed. Such differences are expected since
members of the same TF family can have drastically different
binding preferences, depending on the amino acids in ‘key’
amino acid positions (Benos et al., 2002).
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Table 1. Comparison of motif detectors on 10 yeast promoter sequence datasets

bp sites SOMBRERO
(original initialization)

SOMBRERO
(with prior)

MEME AlignACE

FN FP F FN FP F FN FP F FN FP F

abf1 8600 20 0.45 0.56 0.489 0.40 0.29 0.649 0.55 0.18 0.581 0.50 0.38 0.556
csre 2550 4 0.25 0.73 0.400 0.00 0.75 0.400 0.50 0.67 0.400 0.25 0.82 0.286
gal4 3100 14 0.07 0.24 0.839 0.07 0.07 0.929 0.29 0.17 0.769 0.21 0.08 0.846
gcn1 4500 25 0.60 0.29 0.513 0.44 0.33 0.609 0.92 0.80 0.114 0.60 0.44 0.465
gcr1 3350 9 0.22 0.69 0.389 0.00 0.41 0.720 0.44 0.44 0.556 0.33 0.63 0.480
hstf 3400 9 0.11 0.57 0.552 0.11 0.53 0.615 0.33 0.75 0.364 0.11 0.56 0.593
mat 3500 13 0.31 0.25 0.720 0.15 0.27 0.801 0.15 0.27 0.786 0.31 0.00 0.818
mcb 3150 12 0.08 0.65 0.512 0.08 0.31 0.786 0.25 0.25 0.750 0.08 0.08 0.917
mig1 4500 10 0.20 0.68 0.457 0.10 0.47 0.667 1.00 1.00 0.000 0.90 0.91 0.095
pho2 2350 6 0.50 0.91 0.154 0.33 0.80 0.364 1.00 1.00 0.000 1.00 1.00 0.000
Avg 0.32 0.61 0.493 0.22 0.42 0.663 0.56 0.45 0.489 0.43 0.47 0.550

The best F -score in each dataset is highlighted in bold.

Table 2. Comparison of motif detectors on 19 Drosophila regulatory sequences that contain instances of 5 regulatory binding sites

sites SOMBRERO
(original initialisation)

SOMBRERO
(with prior)

MEME AlignACE

FN FP F FN FP F FN FP F FN FP F

bcd 23 0.57 0.80 0.274 0.43 0.73 0.366 0.87 0.93 0.094 0.78 0.83 0.189
cad 63 0.43 0.46 0.554 0.43 0.45 0.562 0.75 0.43 0.352 0.78 0.67 0.264
hb 119 0.35 0.40 0.621 0.50 0.16 0.624 0.82 0.21 0.299 0.77 0.37 0.333
kni 24 0.76 0.94 0.095 0.76 0.89 0.150 0.88 0.82 0.146 0.88 0.93 0.086
Kr 61 0.61 0.59 0.400 0.30 0.33 0.683 0.64 0.46 0.431 0.52 0.25 0.581

The best F -score for each motif is highlighted in bold.

Using the BP-SOM as prior knowledge significantly
improves SOMBRERO’s motif-finding performance, and
allows SOMBRERO to outperform other popular motif-
finders on real genomic datasets. Currently, SOMBRERO is
the only motif-finding algorithm that can use an entire set
of PSSM models as priors, and therefore overcomes adverse
biases introduced by the selection of an incorrect PSSM
model, or FBP, as a prior.

The approach to motif-finding demonstrated by
SOMBRERO may be further improved by integration with
phylogenetic footprinting methods, or perhaps through the
use of alternative representations of binding sites (e.g. those
described by Barash et al. (2003)). Other improvements may
come through the use of different PSSM scoring functions,
such as the recently described ALLR measure (Wang and
Stormo, 2003). However, one obstacle preventing the adop-
tion of SOM-based motif-finders remains the computational
cost of the SOM algorithm. While SOMBRERO takes only
97 s to completely analyse a 500 bp sequence on one pro-
cessor (using settings described in Methods), the analysis of
15 Kbp using a suitably scaled size SOM takes on average
57 min using 8 processors (when deployed on the SGI Origin

3800, see Fig. 3 for further running time information). Indeed,
further parallelization and deployment on distributed comput-
ing resources may bring down the time taken for SOMBRERO
to run on very large datasets to more acceptable levels.

As mentioned in the introduction, Sandelin and Wasser-
man described two applications for familial binding profiles,
the second of which suggests that a collection of FBPs can
be employed to predict the structural class of TFs that are
likely to act through a newly discovered motif. The classific-
ation of novel motifs is dependent on there being a relevant
FBP in the collection. The manual construction of FBPs in
the Sandelin and Wasserman study is limited to those fam-
ilies that are well represented in the JASPAR database, and
it would therefore seem that an automatic clustering of every
known PSSM into familial models would be more suitable for
automatically classifying novel motifs.

We do not expect that the BP-SOM algorithm described
above would be the most suitable algorithm available for auto-
matically classifying novel motifs. The output lattice does not
clearly delineate families or suggest the relationships between
two nodes, the number of clusters (or FBPs) found by the SOM
is dependent on the lattice size, and empty nodes representing
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Fig. 3. Timing information for SOMBRERO running with various
numbers of processors (np) on different dataset sizes. The points at
which different SOM sizes are used are shown using dotted lines.

no PSSM family often remain on the lattice at the end of
training. While these disadvantages are not important in terms
of biasing a motif-finder as outlined here, they would affect
the usefulness of the algorithm for classification purposes.
However, many other automatic clustering algorithms should
be suitable for classification applications, or for exploring
the relationships between FBPs. We are currently evaluating
the application of hierarchical clustering algorithms in this
domain.
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