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ABSTRACT

FOOTER is a newly developed algorithm that ana-
lyzes homologous mammalian promoter sequences
in order to identify transcriptional DNA regulatory
‘signals’. FOOTER uses prior knowledge about
the binding site preferences of the transcription
factors (TFs) in the form of position-specific scoring
matrices (PSSMs). The PSSM models are generated
from known mammalian binding sites from the
TRANSFAC database. In a test set of 72 confirmed
binding sites (most of them not present in
TRANSFAC) of 19 TFs, it exhibited 83% sensitivity
and 72% specificity. FOOTER is accessible over
the web at http://biodev.hgen.pitt.edu/Footer/.

INTRODUCTION

Identifying DNA regulatory ‘signals’ in the promoter regions of
genes is still one of the challenging problems in computational
biology. Part of the problem is that the transcription factor
binding sites (TFBSs) are usually short DNA sequences (6—
20 bp) with high degree of degeneracy. Algorithms, such as
AlignACE (1), ANN-Spec (2), Consensus (3), Co-bind (4) and
MEME (5) to name a few, try to address the problem of low
signal-to-noise ratio by looking at sets of genes considered to be
enriched in one or more TFBS motifs [for a recent comparative
study of these methods, we refer the reader to the excellent
review of Tompa et al. (6)]. The various oligonucleotides
in the test set that could be targets of a transcription
factor (TF) are scored against some ‘random’ background.
The methods primarily differ on the way they calculate
the background and the objective function they try to optimize.
These widely used methods fall under the category generally
known as de novo ‘pattern discovery’ methods. A consequence
of this methodology is that usually there is not much informa-
tion about the TFs that bind to the identified patterns.

Although these methods are very useful, when knowledge
about the binding preferences of a TF exists, there is no
reason for one to ignore it. Thus, a second category of
methods has been developed, the ‘pattern identification’
methods, that use existing information about the binding
preferences of certain TFs and tries to identify the exact
location of the motifs in a given promoter sequence. The
same problem of low signal-to-noise ratio exists here, espe-
cially when one analyzes promoter sequences from complex
eukaryotes, such as human, mouse or fly. The gene regu-
lation in these organisms is usually more complex and the
promoter length can extend to many kilobases from the
transcription start site (TSS). In this case, evolutionary
information comes to the rescue. Homologous promoter
sequences can be compared in order to identify the evolu-
tionary conserved DNA regulatory signals. This is com-
monly known as phylogenetic footprinting, a term first
coined by Tagle et al. (7). Two of the most widely used
algorithms for analyzing mammalian sequences are rVista
(8) and ConSite (9). These algorithms are using the evolu-
tionary conservation information in a fundamentally differ-
ent way: rVista scans one of the promoters for high-scoring
TFBSs and then uses position conservation to eliminate false
positives. ConSite scans both promoters for motifs that score
higher than a position-specific scoring matrix (PSSM) score
threshold and then it uses a ‘sliding window’ approach to
decide about the position conservation of the putative
TFBS:s.

We recently developed a novel phylogenetic footprinting
algorithm, named FOOTER, which combines two statistics in
order to score a pair of putative regulatory sites. Our method
scans both promoter sequences and for each TF, it retains the
top K scoring sites (‘seed’ TFBSs) in each promoter and then it
compares all against all in order to find the best matching pairs
according to the two criteria. This method has been shown to
perform very well in a set of 72 confirmed TFBS of 19 TFs
(Sn = 83%, Sp = 72%) (25).
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METHODS

Given two homologous promoter sequences and a number of
putative motifs identified in each of them (by default FOOTER
retains one top scoring motif per TF per 300 bp of promoter
sequence), our method performs all pairwise comparisons of
the motifs. A scoring scheme based on two statistics has been
employed. The first statistic scores a pair of motifs according
to their position conservation in the sequence. The second
statistic scores the pair of motifs according to their agreement
with the corresponding PSSM model(s). A PSSM model is the
most commonly used way to represent the binding preferences
of a TF (10). Typically, a set of aligned sequences is used to
calculate a 4 x L weight matrix (L is the length of the pattern).
In each column, the weights correspond to the log-likelihood
of the preferences of the TF to each of the four bases (some-
times normalized for the background), and in some cases it has
been shown that they correspond to the actual binding energies
of the protein-DNA interactions (11-13).

The two statistics FOOTER employs consist of the P-values
of the observed data, under the null hypothesis that the two
sites are unrelated. The position-related score is calculated
using the following formula:

1 2 (N—k)
PFD:P(nygd):N"F ZT, 1
k=1

where Dyxy is the random variable denoting the distance
between two putative sites, d is the observed distance of
the particular putative sites (measured from the 3’ closest
conserved region boundary), N is the effective promoter length
(i.e. the promoter length minus L — 1, where L is the length of
the pattern). Equation 1 calculates the tail probability that two
high-scoring ‘signals’ will be found by chance at a distance d
or less in the promoter with effective length N.

The PSSM-related score is calculated using the following
formula:

PEs=P[(S +T) < (s + 1) | M1, M], 2

where M; and M, are the PSSM models for the two species;
S and T are random variables following the models’ score dis-
tributions; and s and ¢ are the observed PSSM scores. The PFg
score is calculated using Gaussian approximation of mean and
standard deviation estimated through random samplings from
the PSSM model distributions. The results of the samplings are
stored in each model. Similarly to PFp,, Equation 2 calculates
the corresponding tail probability under the null hypothesis
that the two high-scoring ‘hits’ are due to chance alone.

We have developed a novel scoring scheme that combines
the above two statistics in a single similarity measure. The
combined score, PF, consists of a weighted log-likelihood
transformation:

PF= —Wp - IH(PFD) — Wg - IH(PFs), 3

The weights wp and wg are positive numbers that sum to one
(current default values: wp = 0.85; wg = 0.15). Summation of
the logarithms is valid, since the individual PF scores are tail
probabilities based on the null hypothesis that the human and
the mouse patterns are not true binding sites, and hence the
individual tail probabilities should be independent. Note that
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Figure 1. Flowchart of the execution of web-tool FOOTER. Protein or DNA
sequences can be entered in the input. In the first case, a series of BLAST (15)
searches will be performed to identify the homologous promoter sequences.
The DNA sequences will be aligned and putative motifs will be compared
pairwise as we describe in the text.

higher PF values correspond to higher probability that the
human and mouse patterns are true sites. Since PF is the
negative weighted average of the logarithms of P-values, expo-
nentiation of —PF will return the weighted average P-value
(WAP), which we use as a threshold cutoff in the server.



W444 Nucleic Acids Research, 2005, Vol. 33, Web Server issue

Footer Results

[ [ 1] =
Human 0 3000 e
House 0 %I I I : I | 1 3000
2 2 1 2 11
Footer Results

Factor ’ Human Site PosH (orient.) Mouse Site ’ PQSM ’ Score ’WAP

(orient.)
(1) C/EBPbeta | TTGTGTCA || 2736 | TIGIGTAA | 2705 | 88 0.00015
(1) C/EBPbeta | TTTTGCCA | 2589 () | TIGCATCA | 2662() | 83 [0.00025
(1) C/EBPbeta | TGGCCCAA | 2840() | TGAGGTAA | 2419 | 64 [0.00162
(2) C/EBPalpha | TTGCCCAAG | 2509() | TITGACAAC | 2541 | 7.8 [0.00040
(2) C/EBPalpha | ATGGCTAAT | 1326() | TITICCCAA | 1310() | 7.5 [0.00056
(2) C/EBPalpha | TTGCTTAAG | 1967() | GTTGCTCAA || 1948() || 7.1 [0.00079

Figure 2. Example of FOOTER output. The predicted sites are presented in table format and in the PNG formatted figure. The figure displays the alignment of the two

promoter sequences, colour-coded by conservation percentage.

Algorithm

Once the promoter sequences have been specified and the
PSSM models have been selected, FOOTER runs program
DBA (14) to calculate the alignment between them (Figure 1).
Then, a series of conserved and non-conserved regions are
defined. Subsequently, the promoter sequences are scanned
with each of the selected species- or mammalian-specific
PSSM models and the top K ‘seed’ sites (user-defined para-
meter) are retained in each. These sites are analyzed pairwise,
scored according to Equation 3 and matched using a greedy
algorithm. The pairs that score above a user-specified WAP
threshold are reported in the output. We should note here that
since FOOTER compares pairwise all ‘seed’ sites in the two
promoters (irrespectively of the DNA conservation in their
surrounding region), it eliminates the need for a sliding win-
dow to identify ‘conserved’ sites.

Input data types

FOOTER accepts two types of input data (Figure 1): either a
single protein sequence (human or mouse/rat) or two DNA
sequences (presumed human and mouse promoters). The input
sequence files should be in FASTA format. If the specified
input sequence is a human (mouse) protein, FOOTER will
employ a BLASTP search (15) in the human/mouse proteome
to identify its homologous mouse (human) protein, then it will
use these protein sequences to perform TBLASTN searches
against Unigene database (16) to identify the longest mRNA

sequences. Finally, these mRNA sequences will be used in
BLASTN searches against the corresponding genomes in
order to identify the locations of the TSSs and thus automat-
ically retrieve the corresponding promoter sequences.

FOOTER parameters

The input parameters for FOOTER are the w;, and wg weights
(see Equation 3) that should sum to one (if not, the program
will automatically adjust them proportionally); the WAP
threshold (default value is 0.005, which corresponds to a
FOOTER combined score of 7.6); and the number of seed
sites that will be initially retained and analyzed (default: an
average of one site per 300 bp). In the case that a protein
sequence is specified in input (see above), the user should
also specify the promoter length (upstream and downstream
sequence from the TSS) to be analyzed.

Testing

FOOTER has been tested in a set of 72 confirmed TFBS
of 19 TFs. FOOTER was able to predict correctly 60 of
these binding sites (Sy = 83%) while it made an additional
(unverified) 24 predictions. A table with the results mentioned
above is provided at http://biodev.hgen.pitt.edu/Footer/
webNAROS5/Table.pdf. A more detailed description and
extensive evaluation of the algorithm has been submitted
for publication (25).
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IMPLEMENTATION

FOOTER is written in Perl (CGI). For the graphical repres-
entation of the aligned promoters (PNG file), the PG package
of Perl is used. The program uses program DBA (14) for the
promoter alignment, which is currently its main performance
bottleneck. DBA alignment time depends on the size of the
promoter region, though it usually takes 45-75 s for a 3 kb
promoter region. Once the two promoters have been aligned,
FOOTER requires only a couple of seconds to identify
the optimal matching patterns for a 3 kb region (on a Dell
PowerEdge 2650 machine with 2.8 GHz dual-processor Xeon
machine with HT technology and 2 GB of RAM). The time
increases linearly with the number of TFs that it considers
and exponentially with the number of seed patterns. With
the default parameters, the complete search, including auto-
matic identification of the promoter regions and alignment
using DBA, does not usually require more than 3 min for a
promoter length of 3 kb. FOOTER is available at http://
biodev.hgen.pitt.edu/Footer/.

RESULTS

The final result of the program is a list of predicted sites in
a table format (Figure 2). The results include the name of the
TF, the sequence and position of the predicted TFBS in
both the human and mouse promoters, the FOOTER calculated
score (Equation 3) and the WAP value. This table can be copied
into a spreadsheet program and analyzed further. In addition,
FOOTER produces a PNG image with the alignment of
the two sequences, color-coded by percent identity. The
PNG image also displays all predicted sites. Finally, the
results page provides links to the individual promoter
sequences, the DBA alignment output and a summary of
the program run, including all predicted sites (not just those
above the cutoff).

Current limitations/future improvements

At the present stage, FOOTER has two limitations. One is
the availability of PSSM models. We currently use models
we constructed using TRANFAC (17) binding sites. In this way,
we have calculated mammalian PSSM models for 127 TFs.
With the development of high-throughput techniques for bind-
ing site identification, such as ChIP (18) and SELEX (19),
construction of mammalian-specific matrix for many TFs will
not be a problem. Recently, well-curated sets of binding sites
have started to become publicly available (20). Nevertheless,
we plan to add a feature to FOOTER that will allow for a user-
defined PSSM model to be uploaded and used to scan the
promoter sequences. We also plan to hyperlink the PNG
image so that by moving the cursor over it, the user will
receive information on various features of the predictions.

We have noticed that DBA (14) sometimes becomes slow
in aligning long DNA sequences. For this purpose, we are
currently exploring other algorithms (21,22) and strategies
in order to further speed up FOOTER performance. For
example, another way to speed the performance is to use
pre-calculated alignments or databases of aligned promoter
regions [e.g. (23,24)].
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