
Footer: A quantitative comparative
genomics method for efficient recognition
of cis-regulatory elements
David L. Corcoran,1,2 Eleanor Feingold,1,2 Jessica Dominick,2 Marietta Wright,4

Jo Harnaha,4 Massimo Trucco,4 Nick Giannoukakis,4 and Panayiotis V. Benos2,3,5

1Department of Biostatistics, Graduate School of Public Health, 2Department of Human Genetics, GSPH, and 3Department
of Computational Biology and University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh,
Pittsburgh, Pennsylvania 15621, USA; 4Children’s Hospital of Pittsburgh, Pittsburgh 15213, USA

The search for mammalian DNA regulatory regions poses a challenging problem in computational biology. The
short length of the DNA patterns compared with the size of the promoter regions and the degeneracy of the
patterns makes their identification difficult. One way to overcome this problem is to use evolutionary information to
reduce the number of false-positive predictions. We developed a novel method for pattern identification that
compares a pair of putative binding sites in two species (e.g., human and mouse) and assigns two probability scores
based on the relative position of the sites in the promoter and their agreement with a known model of binding
preferences. We tested the algorithm’s ability to predict known binding sites on various promoters. Overall, it
exhibited 83% sensitivity and the specificity was 72%, which is a clear improvement over existing methods. Our
algorithm also successfully predicted two novel NF-�B binding sites in the promoter region of the mouse autotaxin
gene (ATX, ENPP2), which we were able to verify by using chromatin immunoprecipitation assay coupled with
quantitative real-time PCR.

[Supplemental material is available online at www.genome.org.]

The advent of the genomic era initially raised hopes that the
cellular mechanisms would be easily deciphered once the set of
proteins of an organism had been identified. We now know that
more complex phenotypes do not necessarily result from a larger
number of genes, but could be the result of fine-tuning of their
regulation. Thus, the identification of the DNA regulatory ele-
ments that control gene expression is the next necessary step in
discovering regulatory pathways and understanding the basis of
many diseases.

Each transcription factor (TF) protein usually recognizes a
small set of TF binding sites (TFBSs) with high affinity. These sites
can be identified by biochemical studies or by in vitro DNA se-
lection binding experiments, such as SELEX (Choo and Klug
1994). The recent advances in chromatin immunoprecipitation
(ChIP) (Orlando 2000) have enhanced our ability to identify
multiple in vivo targets of a particular TF under certain cellular
conditions. In any case, the information on the binding prefer-
ences of a TF needs to be organized in a form that will allow one
to search the genome for new binding sites in the promoters of
other genes. A lot of progress has been made during the last two
decades on the development of such organization/representation
methods (for a review, see Stormo 2000). The most widely used
method is based on Position-Specific Scoring Matrices (PSSM),
which represent the binding preferences of a TF to the DNA as a
4 � L weight matrix (L is the length of the pattern). Typically,
the weights in the matrix constitute some form of log-probability

of the binding frequencies, and in some cases, it has been shown
that they correspond to the binding energies (Benos et al. 2001,
2002a,b). In other cases, position dependencies on the DNA tar-
gets make simple PSSM models less accurate (Barash et al. 2003;
Zhou and Liu 2004). However, in the case of complex modeling,
the much larger sampling space combined with the lack of data
might cause lower performance due to data overfitting.

If a PSSM model exists for a TF, it can be used to scan the
promoters of other genes or the genome for high-scoring sites/
patterns (Peters et al. 2002). However, the pattern matching on a
genomic scale is far from accurate, especially in complex eukary-
otic genomes. Additional properties that affect binding, such as
DNA structure and the state of the chromatin cannot be modeled
by these methods. Furthermore, the TFBS “signal” sometimes
stands only slightly above the “background noise” of the ge-
nome. Protein cooperative effects might allow or require a func-
tional binding site to be of suboptimal specificity. Thus, even
with a perfect representation of the binding site preferences of a
TF, the prediction of the real sites in mammalian promoters with
simple pattern matching algorithms is still inaccurate.

One way to increase the signal is to use evolutionary infor-
mation in identifying the conserved sites in multiple species.
This is known as phylogenetic footprinting, a term coined by Tagle
et al. (1988). A number of algorithms have been developed that
use prior information (such as PSSM models) and comparative
genomics to address the issue of accurate detection of TFBSs,
including rVista (Loots et al. 2002) and ConSite (Lenhard et al.
2003). Given an alignment between two homologous promoter
sequences, rVista (Loots et al. 2002) scans one of the promoters
by using TRANSFAC (Wingender 2004) PSSM models for putative
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TF binding sites. The binding sites are then evaluated based on
the degree of conservation of the interval in which they are lo-
cated. Percent conservation is calculated in a 21-bp dynamically
sliding window. Sites that are conserved on both promoters are
reported. More recently, Lenhard et al. (2003) developed a flex-
ible suite of methods for the identification and visualization of
the conserved regulatory motifs in homologous sequences. Their
method scans both promoter regions for putative binding sites
and reports those pairs that are situated in equivalent positions
in the conserved regions. Conserved regions are calculated over a
sliding window of 50 bases (default value). In addition, other
automated or semi-automated methods and tools have been re-
cently developed around similar ideas of detection of cis-
regulatory motifs in conserved DNA regions (Jegga et al. 2002;
Schwartz et al. 2003).

Our method, Footer, differs from existing pattern matching
methods in that it combines two types of information into a
single scoring scheme. To our knowledge, it is the first method
that combines multiple quantitative criteria in deciding about
the micro-homology of the TFBSs. Overall, it surpasses existing
methods in performance and utilizes efficiently information
from the evolution of the cis-regulatory regions.

Methods

Phylogenetic conservation in the DNA regulatory regions

Not much is known about the evolution of DNA regulatory re-
gions. This is due to the complexity of the constraints applied on
them and the limited amount of available biological data. Con-
straints can be associated with the distance of the TFBS from the
transcription start site (TSS) or from other sites (distance con-
straint) or with deviations from the TFs “preferred site” pattern
(model score constraint). The distance constraint can be attrib-
uted to the need of the TFs to “communicate” with other pro-
teins or protein complexes via protein–protein interactions. This
is probably the most important of the constraints, and other
phylogenetic footprinting algorithms have heavily depended on
that for reducing the number of false-positive predictions (Jegga
et al. 2002; Loots et al. 2002; Lenhard et al. 2003; Schwartz et al.
2003). The PSSM model score constraint reflects to the affinity of
a TF to its DNA targets. Although it has not been proved in
general, certain examples exist that show that the PSSM model
scores could be considered as an approximation of the TF-DNA
binding energies (Benos et al. 2001, 2002a,b). On theoretical
grounds, if one assumes that the TF interacts with the DNA in
equilibrium, then the protein–DNA specificity will follow a de-
rivative of the Boltzmann distribution:

P�D�P� =
Pref �D� � e−H�D,P��RT

Z
(1)

where D and P are the specific DNA target and the TF protein,
respectively; H(D,P) is the binding energy of the interaction;
Pref(D) is the frequency of target D among the accessible genomic
sites; and Z is the partition function, summed over all DNA targets
(for a given protein):

Z = �
d

Pref �d� � e−E�d,P��RT

PSSM scores are calculated as the negative logarithms of the fre-
quencies of the base pair targets (typically normalized by the

background frequencies). Thus, to the extent that these frequen-
cies constitute an approximation of the base probabilities, the
PSSM scores can be viewed as an approximation to the difference
in the average specific binding energy with respect to the back-
ground. The protein–DNA interaction energy is one of the factors
that determine the biological role of a binding site, although
there is not a linear correlation between binding energy and tran-
scription efficiency. Likewise, there is no linear correlation be-
tween the distance of a site from the TSS and transcriptional
activation or repression. However, a model that utilizes both in-
formation has the potential on performing better in predicting
the true binding sites.

Overview of the Footer algorithm

Two promoters are scanned for high-scoring patterns with a user-
selected set of species-specific or mammalian-specific models. We
use the program Consensus (Hertz and Stormo 1999) to calculate
the PSSM models from sets of binding sites derived from the
TRANSFAC database (Wingender 2004). For a given TF, a user-
specified number of the top-scoring patterns is selected in each of
the two promoters (“seed” patterns) and compared pairwise. The
comparison is based on (1) the relative location of the patterns in
the promoter region and (2) their agreement to the correspond-
ing PSSM models. A probabilistic scoring scheme has been
adopted for each of these criteria, under the null hypothesis that
the two patterns are unrelated; thus the observed position and
score values are due to chance alone. The two probabilities are
combined in a single metric, and the pairs that score below a
user-specified average P-value threshold are reported as the most
likely true TF targets. For the matching, we apply a greedy algo-
rithm according to which in each round the best matching pair
is reported and the corresponding patterns are excluded from
subsequent rounds. The algorithm stops when all seed patterns
have paired or when the P-value threshold has been exceeded.
Below, we describe some aspects of the method in more detail.

PSSM models

We constructed species-specific (i.e., human and mouse/rat) ma-
trices from known target sequences recorded in the TRANSFAC
database (Wingender 2004). The sites are selected so that both
the protein and the DNA targets belong to the same species. The
model is constructed from the base frequencies in each column
with the addition of pseudocounts equal to 10% of the number
of sequences and distributed according to the background model
(i.e., equiprobable base distribution for mammals). If the number
of available target sequences in each of the human and mouse/rat
is greater than six, then species-specific models are created; oth-
erwise sequences are joined into a mammalian-specific model.
Traditionally, the pattern searching algorithms were using “all-
species” matrices for the searches, although more recently, class-
specific (i.e., mammalian-specific for human–mouse compari-
sons) matrices have been used (Lenhard et al. 2003). In our recent
study, we found that although in general the evolution of the
binding profiles follows the evolution of the protein families,
there are notable exceptions to this rule (Mahony et al. 2005).
An example of the effect of TFBS heterogeneity in different spe-
cies is presented in Figure 1. The LOGO of the binding prefer-
ences of the AP-1 TF from sites from multiple species is plotted
(TRANSFAC score matrix M00199) (Fig. 1A). Currently, this is the
most general AP-1 weight matrix in the TRANSFAC database and
is derived from sites from a variety of species, including human,
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mouse, rat, chicken, and frog. Figure 1, C and D, shows the col-
lections of human and rodent sites, respectively, that Footer uses.
In Figure 1B the human and rodent sets have been joined to
create a mammalian-specific set. These LOGOs show clearly that
although the optimal pattern is conserved in all data sets, species-
specific differences emerge in suboptimal patterns. This might
not affect the pattern matching algorithms that use a PSSM score
cutoff to predict sites, but it can be important for the Footer
algorithm that uses the PSSM score in a quantitative way (see
below). For example, assuming that the PSSM models are indica-
tive to the binding affinity of the TF to the DNA through equa-
tion 1, the pair of AP-1 sites TGATTCA (human) and TGAATCA
(mouse) will be closer in affinity to the corresponding species-
specific optimal sites than will the TGAATCA (human) and
TGATTCA (mouse) pair. Note that both sites may score above a
PSSM score threshold, regardless of the PSSM model and the or-
ganism they are found in. In addition, algorithms that use the
multiple-species or the mammalian model will consider the two
pairs equivalent. In fact, according to the multiple-species model
of Figure 1A, site TGAATCA will also be even less favorable than
site TGAGTCA, regardless of the organism it was found in. The
quantitative use of species-specific PSSM models, however, al-
lows Footer to distinguish between the above two pairs in com-
parison. Currently, we have constructed 19 species-specific and
108 mammalian-specific matrices, but we expect that more spe-
cies-specific matrices will be used in the future, once more data
becomes available.

Site comparison
Each pair of high-scoring patterns (e.g., human and mouse) is
evaluated according to the distance and PSSM score criteria.

Distance probability

Assume that a pair of patterns is found to be d bases apart in the
two promoters of length Ntot. For a pattern of length L we define
the effective promoter length, N = Ntot � L + 1. Assuming a uni-

form distribution of randomly occurring patterns, the “distance
probability,” PFD, is

PFD = P�DXY � d� =
1
N

+ �
k=1

d 2 � �N − k�

N2 (2)

This is derived from the fact that the probability of observ-
ing two patterns at a distance of zero is 1/N and the probability
of observing any other distance d > 0 is 2(N � d)/N2. Equation 2
can be further simplified to (2 � d + 1)/N � d � (d + 1)/N 2,
which we use for the PFD calculations. The distance between two
putative sites is calculated in relation to their closest 3� conserved
region boundary (instead of the TSS) in order to allow for correc-
tions of local insertions/deletions that frequently occur in the
promoter regions. This applies to patterns that are located in
both conserved and nonconserved regions, as they are deter-
mined by the output of the program DNA Block Aligner (DBA;
part of the Wise2 software package) (Jareborg et al. 1999).

PSSM similarity score probability

Assume that we have the PSSM models M1 and M2 for the two
species, and that S and T are random variables following the
models’ score distributions. Ideally, we would like to calculate
the probability that we will observe scores s and t (or better) by
chance given M1 and M2. We formulate this in the following way,
which allows for more flexibility in the choice of the scores:

PFS = P��S + T� � �s + t��M1,M2� (3)

To reduce the computational complexity, we approximate
the tail probability given in equation 3 by using the Gaussian
distribution. In this way, only the mean and variance need to be
calculated. On a theoretical basis, the Gaussian approximation
(Hertz and Stormo 1999) is justifiable under the central limit
theorem for reasonably long TFs and for PSSMs that are not ex-
tremely skewed. We checked the approximation for three TFs
(including one of the most skewed) using Q–Q plots, and found
it to be quite good except at the extreme tails. This is more than
adequate for distinguishing between “moderate” and “small”
P-values, the primary function of the PFS score. We calculate the
mean and standard deviation for the Gaussian approximation by
Monte Carlo sampling of 1 million sequences from each pair of
models.

Composite score and weighted average P-value

The composite score of Footer is the weighted negative sum of
the logarithms of the individual tail probabilities from equations
2 and 3:

PF = −wD � ln�PFD� − ws � ln(PFS) (4)

The weights wD and wS are positive numbers that sum to
one. Summation of the logarithms is valid, since the two tail
probabilities are based on the null hypothesis that the human
and the mouse patterns are not true binding sites, and hence the
individual tail probabilities are independent. According to equa-
tion 4, higher PF values correspond to higher probability that the
human and mouse patterns are true sites. There is no objective
way to assign values to these weights that will be valid for all TFs.
In fact, one would expect that for each TF, the distance and the
score probability scores have different importance. Besides, the
quality of the PSSM model will be a factor that will affect the ws

parameter. In the current study, we used weights of 0.85 and 0.15

Figure 1. AP-1 binding site preferences in different species clusters. The
LOGOs for the AP-1 binding preferences from (A) TRANSFAC weight
matrix M00199 (includes sites from various organisms like human,
mouse, rat, chicken and frog) and (B) human, mouse, and rat. Most of
current algorithms are using one of the two variants of weight matrices to
scan the promoter regions. (C, D) Further partition of the mammalian
sequences into human and rodent, revealing differences in the subopti-
mal patterns. LOGOs are created by using the program enoLOGOS
(Workman et al. 2005) available on the Web http://biodev.hgen.
pitt.edu/cgi-bin/enologos/enologos.cgi.
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for the wD and wS, respectively. PF is the weighted sum of nega-
tive logarithm P-values (equation 4). Thus, exponentiation of
�PF will give the weighted average P-value (WAP) of Footer
score. In the present study, we used a WAP threshold of 0.05%.
All Footer parameters we used in this study, including the
weights and the WAP threshold, were determined empirically,
based on an initial analysis we performed on the 18 TFBSs in the
promoters of the genes PEPCK, G6Pase, and Leptin. Exclusion of
these 18 sites from the evaluation set does not alter the results
(see below).

ChIP assays

ChIP (Orlando et al. 1997; Orlando 2000) is a biochemical pro-
cedure for capturing in vivo TFBSs. In our case, we used ChIP
assays coupled with real-time PCR with primers specific for the
NF-�B sites (known and predicted) in the promoters of the iNOS
and autotaxin genes (ATX, ENPP2), in order to confirm Footer
predictions.

About 5 � 106 D2SC-1 cells (dendritic cell [DC] line) were
propagated in DMEM/F12, 10% fetal calf serum. NF-�B nuclear
translocation was induced by LPS (25 µg/mL final). Cells were
collected prior induction and at 30-min, 1-h, and 2-h time-points
post-induction. Proteins were cross-linked onto the DNA with
formaldehyde (1% final 15 min at 37°C). Cells were lysed and
sonicated (1-min total pulse at 20% amplitude on a COLE
PALMER 750-W sonicator). The conditions for the sonication
had been previously determined empirically to yield fragments
of 500-bp average size (data not shown). The complexes precipi-
tated for 18 h at 4°C with an anti-NF-�B (p65) monoclonal anti-
body sc-8008 (Santa Cruz Biotechnology). Cross-links were re-
versed by heating for 4 h at 65°C, and proteinase K treatment was
used to purify the DNA fragments. As a control experiment, we
performed a “mock ChIP” (i.e., precipitation without the primary
antibody) in identical conditions with the LPS-induced cells for 1 h.

Real-time PCR on ChIP-precipitated DNA

Real-time PCR is a technique used to quantify the number of
template DNA (or RNA) molecules that are in a sample. We used
real-time PCR on the ChIP-precipitated DNA in order to identify
how many NF-�B targets were captured for each of the four sites.
The real-time PCR data correspond to the amount of DNA recov-
ered in each precipitation (induced and non-induced). This per-
centage does not reflect the in vitro binding affinity of the NF-�B
to its corresponding DNA sequence target(s). It is rather related to
the percentage of the cells that NF-�B was bound to at the time
on the particular target. Thus, it can be considered as the in vivo
affinity (VIVA) of NF-�B to the corresponding DNA target, taking
into consideration protein–protein interactions, chromatin ac-
cessibility status, etc. (Fernandez et al. 2003). This method for
data collection is designed to overcome problems related to pre-
dicted targets, where the prediction score of the NF-�B target
sequences is not directly associated with the binding strength
(Hoffmann et al. 2003).

One tenth of each ChIP DNA precipitate was used as tem-
plate in real-time PCR reactions under standard buffer condi-
tions. PCR ran for 40 cycles in a BioRad iCycler. The PCR condi-
tions were 30 sec at 95°C, 30 sec at 56°C, and 30 sec at 72°C. The
primers were designed with the IDTDNA publicly available soft-
ware (http://www.idtdna.com/), so that they would amplify a
region of ∼150 bp around each of the four NF-�B binding sites we
tested. The sequences of the primers are as follows: iNOS1-for

5�-ATGGCCTTGCATGAGGATACACCA, iNOS1-rev 5�-GGTGG
CTGAGAAGTTTCAAACCAG, iNOS2-for 5�-TCCTGTCAGGGA
CAGATCCACTTT, iNOS2-rev 5�-TCTGATGATGGATGTGGCAG
GTGA, autotaxin1-for 5�-TTGGAAGCTCCCATTGTGTGAAGC,
autotaxin1-rev 5�-TCTGGCAGTTGGAATGACCCTGTA, auto-
taxin2-for 5�-GTAAACGCTTCGAGCTGATGGGAA, and auto-
taxin2-rev 5�-GCTGTGGCCAATAACAGTGCAT.

Results

Sensitivity and specificity

We measured the efficiency of Footer in terms of sensitivity and
specificity. Sensitivity (SN) is defined as the percent of successful
predictions (compared with the total number of sites) and speci-
ficity (SP) is defined as the percentage of predictions that are
correct (compared with the total number of predictions). Natu-
rally, in the case of prediction of TFBSs, the number of false
negatives cannot be calculated accurately, since many TFBSs are
yet to be discovered. Hence the SP value should be considered as
the lower limit of the true specificity.

Analysis of known binding sites

We tested the prediction efficiency of our algorithm on 72 con-
firmed TFBSs of 19 TFs in 24 promoter regions. In all cases, we
analyzed the 3-kb region upstream and 50 bp downstream of the
TSS. In each run, we “blindly” retained and analyzed the top 10
predictions per TF in each promoter, or one prediction per 300 bp
(default value for our server). We chose this criterion instead of
selecting the sites that score in the (e.g.) top 10% of the PSSM
scores because we would like also to consider some of the lower
scoring sites (if available). Lower scoring sites can be functional
sites if the corresponding TF participates in a protein complex,
which as a whole shows high affinity for the DNA. This has been
observed in the case of homodimer proteins, where one of the
two half sites might score low against a monomer PSSM model
(Wu et al. 1998; Hollenbeck and Oakley 2000). Likewise, this can
also happen in heterodimeric proteins. A summary of the results
of our analysis is presented in Table 1. Detailed presentation of
the results is provided in the Supplemental material.

Overall, Footer was able to correctly identify 60 of the 72
binding sites, hence exhibiting a sensitivity of 83.3% (Table 1). If
we consider all additional (unverified) predictions to be false

Table 1. Summary of the results of predictions of programs
Footer, ConSite and rVista

Footer
ConSite

(def)
ConSite
(70%) rVista

No. of sites 72 49 49 69
TP 60 23 34 54
FP 23 15 28 189
SN 83.3% 46.9% 69.4% 78.2%
SP 72.3% 60.5% 54.8% 22.2%

Footer ran with its default parameters (one “seed” site per 300 bp, WAP
cutoff 0.05%). ConSite ran with its default parameters and also with 70%
for score threshold and the minimum between 70% or the default for
identity percentage. rVista ran with the option “conserved”. Based on the
results of the optimal runs of these programs on the same promoter set,
their sensitivity and specificity values were measured to be 69% and 55%
for ConSite (on 49 sites) and 78% and 22% for the rVista (on 69 sites),
respectively. By comparison, Footer achieved a sensitivity of 83% and
specificity of 72% (on 72 sites).
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positives, then Footer exhibited a specificity of 72.3% (i.e., 60 of
the 83 predictions are confirmed). However, six of these addi-
tional predictions are located outside of the regions that were
biochemically analyzed, and some of them differ from a true site
by a single base. Note that if we exclude from the analysis the 18
TFBSs we used to assign the weight values in equation 4 (i.e., the
TFBSs at the promoters of the genes PEPCK, G6Pase, and Leptin),
the results are consistent (SN = 87% and SP = 70%). This indicates
that the initial 18 selected sites constitute a representative
sample.

Prediction of sites in nonconserved regions

We found that most of the known sites were located in conserved
genomic regions as these were defined by the alignment program
DBA (Jareborg et al. 1999). Three out of the 72 confirmed sites
were located in nonconserved regions: one NFY site (ACDC pro-
moter at �117), one Sp1 site (MMP9 promoter at �560), and one
HNF-1� site (Pdx-1 promoter at �2114). In the first two cases,
both human and mouse sites were in a nonconserved region,
whereas in the case of the HNF-1� site, the human site was lo-
cated in a conserved region. Footer predicted correctly the NFY
and the HNF-1� site.

Performance of Footer with respect to the WAP threshold

The WAP parameter is the most important parameter of our
method. Thus, we tested Footer performance on multiple WAP
thresholds. The results are presented in Figure 2. Footer performs
best at a WAP threshold of 0.05%, which is the value we used for
the analysis of all genes in this article.

Performance of Footer with respect to the promoter length

The distance probability depends on the size of the promoter
(equation 2). Therefore, we tested Footer on various promoter
lengths, in order to better evaluate it. The results on the sensi-
tivity and specificity are shown in Figure 3. Specificity shows a
maximum value at 2.5kb (74%), but it remains essentially con-
stant over all promoter lengths up to 3.5 kb. Sensitivity, on the
other hand, increases with the promoter length up to the size of
3 kb. This can be attributed to the fact that a considerable num-
ber of confirmed TFBSs (∼12%) are located in the region beyond
1 kb from the TSS; but it is also due to the fact that the num-
ber of “seed” sites that Footer retains and analyzes is proportional
to the promoter length. We did not test Footer in promoter

lengths >3.5 kb, since all the confirmed sites are within that
region (Table 1).

Comparison with other methods

We compared Footer with two algorithms (online versions) that
use comparative genomics and PSSM models to identify phylo-
genetically conserved signals in mammals: ConSite (Lenhard et
al. 2003) and rVista (Loots et al. 2002). The results are summa-
rized in Table 1, while a detailed description of the comparison
procedure is provided in the Supplemental material section.
Overall, Footer outperformed these methods by predicting more
true sites without increasing the number of false-positive predic-
tions. ConSite had models for 49 of the 72 sites and with the
default parameters showed SN = 46.9% and SP = 60.5%. By low-
ering the score threshold to 70% (default value: 80%) and run-
ning on the promoters that did not perform well with the default
parameters, its SN increased to 69.4% with SP = 54.8%. Note that
searching for the same 49 sites, Footer was able to find 44
(SN = 89.8%) making 15 additional predictions (SP = 74.6%) (see
Supplemental material, Supplemental Table 2). rVista has PSSM
models for 69 sites and it performed well in finding 54 of them,
but it produced 189 additional predictions (false positives)
(Supplemental Table 2). So, its overall performance was SN = 78%
and SP = 22%. Note that searching for the same 69 sites, Footer
was able to find 59 (SN = 85.5%), making 21 additional predic-
tions (SP = 73.8%) (see Supplemental material, Supplemental
Table 2).

Successful prediction of two novel NF-�B binding sites
in the promoter of autotaxin gene

We used Footer to predict NF-�B binding sites in the promoters of
the genes iNOS and autotaxin. NF-�B is a key factor in the onset
and progression of type 1 diabetes mellitus (T1DM) (Weaver Jr. et
al. 2001; Poligone et al. 2002; Sen et al. 2003). There are two
known NF-�B sites in the promoter of iNOS gene at positions
�114 and �1044, identified in inflammatory stimulated cells
(Wei et al. 2004). The promoter of autotaxin gene has not been
previously shown to contain NF-�B sites, although some reports
indicate that NF-�B could be involved in its regulation during
maturation of DCs (Le Naour et al. 2001). We analyzed the pro-

Figure 2. Performance of Footer in relation to the WAP threshold. This
graph presents the sensitivity (black line) and specificity (gray line) over
all promoter regions analyzed (see text). According to this graph, Footer
performs best on a WAP threshold of 0.05%.

Figure 3. Sensitivity and specificity performance of Footer in relation to
the analyzed promoter length. This graph presents the sensitivity (black
line) and specificity (gray line) over all promoter regions analyzed (see
text). According to this graph, Footer performance increases with exam-
ined promoter length up to 3 kb, while specificity remains essentially
constant.
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moters of these two genes with Footer, and we found three new
putative NF-�B binding sites: one in the promoter of iNOS (po-
sition �2760) and two at the promoter of autotaxin (positions
�375 and �596).

ChIP assays were performed as we describe in the Methods
section on D2SC-1 cells induced with LPS for 30 min, 1 h, and
2 h. ChIP on non-induced cells was also performed (control ex-
periment). Figure 4 plots the proportion of the ChIP precipitated
DNA targets in the LPS-induced cells relative to the non-induced
cells. For each site, we plot the time point where the NF-�B as-
sociation was highest based on the real-time PCR values. These
data confirm the strong NF-�B association to site iNOS114
(known site; five times more iNOS114 targets precipitated post-
induction compared to the non-induced cells). Furthermore,
these data show that NF-�B is associated with both predicted au-
totaxin sites (almost fourfold for autotaxin375 and 6.5-fold for
autotaxin596), and there seems to be no association to iNOS2760
site under these conditions (Fig. 4). Note that although the two
autotaxin sites are located within 220 bp, the real-time PCR on
ChIP DNA yield appears to distinguish the NF-�B association
patterns in the two. This is more obvious when patterns on all
three time-points are compared (data not shown). In all cases, the
real-time PCR values of the mock experiment were at the same
level with those of the non-induced cells (data not shown).

Footer Web server

In order to make Footer available to the scientific community, we
developed a Web server. The server receives a pair of DNA se-
quences in its input (typically, human and mouse homologous
promoter sequences) and then it performs the sequence align-
ment (program DBA) (Jareborg et al. 1999), pattern matching,
and pattern comparison in order to find the most probable site
pairs. The user-defined parameters are the list of TFs, the WAP,
the wD and wS weights (equation 4), and the number of “seed”

sites considered initially per promoter. The patterns that score
below the user specified WAP threshold are reported together
with the color-coded alignment that depicts the conservation
throughout the DNA sequence length. The server also accepts a
protein sequence as input of human or mouse/rat origin. In this
case, BLAST searches (Altschul et al. 1990) are used to identify the
closest mouse or human protein homologs, respectively, and
back searches performed to establish orthology. If orthology is
not established the user is informed. In any case, the two proteins
are used to search the corresponding UniGene collections
(Wheeler et al. 2003), so that the longest mRNA sequences are
identified and used against the genome sequences to determine
the corresponding TSSs. Subsequently, a user-defined number of
bases are extracted around the TSSs, and the two DNA sequences
are compared with Footer. The results are presented in tabular
format. A detailed description of the Web server functionality
will be presented soon (Corcoran et al. 2005). Footer is available
to the public through our server (http://biodev.hgen.pitt.edu/
cgi-bin/Footer/Footer.cgi).

Discussion
Transcription is a complex biological process, and its regulation
depends on many factors like the presence of TFBSs in the pro-
moters of the genes, the state of the chromatin, the localization
of the TF molecules, the interactions between TFs and other pro-
tein or RNA molecules, etc. Computationally, the identification
of TFBSs in large mammalian genomic sequences is a very diffi-
cult task. This is due to the low signal-to-noise ratio inherent
with all DNA regulatory “signals,” but also due to the more com-
plex regulatory mechanisms, which might require or allow some
functional sites to be of low affinity. The course of evolution
provides a rich source of information for unraveling this biologi-
cal complexity. Our method, Footer, uses prior information or-
ganized in species- or mammalian-specific PSSM models and ap-
plies a comparative genomics strategy in order to detect the most
likely DNA regulatory signals given a promoter region.

With this article we are introducing two new concepts. One
is that the conservation in the position of the TFBS in a promoter
sequence and its agreement with known binding preferences of
the corresponding TF can be quantified and used jointly to pre-
dict efficiently TFBSs. Other methods had used the position con-
servation to different extents, but we combine the two criteria in
a single metric. Interestingly, the real-time PCR data in the four
sites we analyzed (Fig. 4) exhibit a strong anti-correlation with
Footer calculated WAP scores (R = �0.96; the lower the WAP
score the higher the measured NF-�B association). Of course, the
small sample size does not allow for any statistically significant
conclusions to be drawn, but we think it is an interesting finding
that shows the potential of Footer.

The second concept we introduce with this work is that the
variability in multiorganism TFBSs should be treated with cau-
tion. Our recent data analysis (Mahony et al. 2005) showed that
there are notable exceptions where the evolution of the familial
PSSM models does not follow the evolution of the protein fami-
lies. Although, detailed analysis has not been performed with
species-specific models, these are expected to play an important
role in Footer performance, due to its quantitative use of the
PSSM score. We suggest that organism-specific or class-specific
(in our case, mammalian) PSSM models should be used when
enough sequences are available. Our PSSM models contain be-
tween six (GATA-3) and 108 (Sp1) sequences, and they performed

Figure 4. Real-time PCR data on NF-�B association to one known and
three predicted binding sites. The real-time PCR data correspond to the
in vivo NF-�B association to known and predicted sites in the promoters
of genes iNOS and autotaxin (two sites in each promoter). This graph
confirms the direct association of NF-�B with iNOS114 (known site at
position �114 from the TSS) and reveals that NF-�B binds on both
predicted sites in autotaxin gene (at positions �375 and �596, respec-
tively). The peaks show the maximum fold association compared to non-
induced cells (control sample) in the time interval between 30-min and
2-h post-induction. This analysis does not confirm a second predicted
iNOS site (at position �2760). All predictions were made by Footer,
using the default parameters described in the text.
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reasonably well in our test set. By comparison, TRANSFAC ma-
trices (Wingender 2004) are constructed from as little as four
sequences (e.g., Elk-1). We are currently looking on ways to in-
crease the size of our data set, especially for the models with a small
number of sites, by including data from other sources.

In general, we found that our scoring system is successful in
finding most of the known binding sites on a test set comprised
of a total of 72 sites in 24 human–mouse promoters. In addition,
it successfully predicted two novel NF-�B sites in the promoter of
the autotaxin gene, which we confirmed by ChIP assay coupled
with quantitative real-time PCR. Overall, Footer exhibited sensi-
tivity of 83.3% and specificity of 72.3%, which surpasses existing
methods (Loots et al. 2002; Lenhard et al. 2003). The sensitivity
of Footer increased with the promoter length examined (up to 3
kb). Three out of 72 sites (4%) were located in nonconserved
regions, as these were identified by the alignment program DBA
(Jareborg et al. 1999) and Footer correctly predicted two of them.
Predicting sites in nonconserved regions is currently difficult,
since most available algorithms tend to exclude nonconserved
regions from the analysis.

Ten sites of the 72 in the test set were included in the PSSM
models Footer used for its predictions. These are one NFAT site,
one HNF-3� site, one C/EBP� site, one CREB site, one GR-� site,
one T3R-� site, one NF-1 site, one MEF-2 site, and two NF-�B
sites. Exclusion of each of these sites from the corresponding
PSSM models resulted in correct identification of the seven
(NFAT, HNF-3�, C/EBP�, T3R-�, NF-1, and both NF-�B sites),
whereas Footer was not able to predict the MEF-2, CREB, or the
GR-� sites (the GR-� site was not found in the original analysis as
well). Note that if we exclude from the analysis these 10 sites, the
sensitivity and specificity values are still fairly high (82% and
60%, respectively). We do not know how many of the sites in our
test set were included in the models that ConSite and rVista use.

Similarly to the ConSite method (Lenhard et al. 2003),
Footer scans both promoter sequences for high-scoring pairs of
TFBS. But Footer and ConSite have a number of differences. Con-
Site compares only sites that are located within conserved re-
gions (default is 80% identity over a window of 50 bases). Fur-
thermore, it uses the PSSM scores for filtering out those se-
quences that do not score above a threshold. The top 10% of the
conserved windows are analyzed further for concurrent instances
of a TF “hit,” which then is reported as “true TFBS.” Footer, on
the other hand, scans both sequences for the top 10 high-scoring
TFBS per 3 kb of promoter sequence (default value; no score
threshold applied). This allows Footer to include even some
weaker signals in this initial pattern matching. Then, the pat-
terns are analyzed pairwise with respect to their matching score
(based on the species-specific PSSM models, when available) and
their relative location in the promoter. Putative binding sites on
both the conserved and nonconserved regions are considered.

PSSM models

Currently, the most widely used way to represent TF binding
preferences is via PSSM models (Stormo 2000). Previous reports
have pointed out that in some cases the PSSM models might
constitute an oversimplification of the real binding preferences
(Barash et al. 2003; Zhou and Liu 2004) and hence predictions
using such models might not be accurate. Although currently
Footer uses PSSM models for its initial pattern matching and the
calculation of the PFs value (equation 4), it can easily utilize any
statistical representation (see also equation 3). The data for con-

structing the PSSM models are currently obtained from the
TRANSFAC database (Wingender 2004), but well-curated data
sets have started to become available (Sandelin et al. 2004).

Limitations and generalization of comparative
genomics methods

One limitation of all comparative genomics methods, including
Footer, is that they cannot identify regulatory elements that have
been acquired/become extinct after the speciation of the com-
pared species. For this reason, some researchers have proposed
the comparison of multiple species to determine the true regula-
tory elements (Duret and Bucher 1997; McCue et al. 2002; Cliften
et al. 2003). Footer provides a probability-based scoring function,
which makes it potentially expandable to comparisons of three
or more species. Another limitation of the comparative genomics
methods is the presence of insertions/deletions in the promoters
of the genes. ConSite (Lenhard et al. 2003) addresses this prob-
lem by focusing on the conserved regions only. Footer, on the
other hand, uses promoter alignments to recalibrate the point of
reference for calculation of the distance between two predicted
sites. This diminishes the number of false negatives due to local
insertions/deletions. Finally, the lack of availability of species-
specific PSSM models presents another limitation to our pro-
gram. We believe that the technologies such as ChIP (Orlando
2000) and SELEX (Choo and Klug 1994), for the high-throughput
identification of TFBS in vivo will soon remove this obstacle. We
expect that in future years, algorithms like Footer will become
essential tools for the analysis of the wealth of the accumulated
data in complex eukaryotic genomes.
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