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ABSTRACT

Man and Stormo and Bulyk et al. recently presented
their results on the study of the DNA binding af®nity
of proteins. In both of these studies the main con-
clusion is that the additivity assumption, usually
applied in methods to search for binding sites, is
not true. In the ®rst study, the analysis of binding
af®nity data from the Mnt repressor protein bound
to all possible DNA (sub)targets at positions 16 and
17 of the binding site, showed that those positions
are not independent. In the second study, the
authors analysed DNA binding af®nity data of the
wild-type mouse EGR1 protein and four variants dif-
fering on the middle ®nger. The binding af®nity of
these proteins was measured to all 64 possible tri-
nucleotide (sub)targets of the middle ®nger using
microarray technology. The analysis of the measure-
ments also showed interdependence among the
positions in the DNA target. In the present report,
we review the data of both studies and we re-
analyse them using various statistical methods,
including a comparison with a multiple regression
approach. We conclude that despite the fact that
the additivity assumption does not ®t the data
perfectly, in most cases it provides a very good
approximation of the true nature of the speci®c
protein±DNA interactions. Therefore, additive
models can be very useful for the discovery and
prediction of binding sites in genomic DNA.

INTRODUCTION

Methods to search for transcription factor binding sites often
employ weight matrices (also called position speci®c scoring
matrices and related to hidden Markov models) (1). These
matrices contain a score for all possible bases at each position
in the binding site, and the total score for any site is the sum
over all the bases in that site. A good matrix for a particular
protein would give high scores to all true binding sites, and

lower scores to sites that do not bind the protein with high
af®nity. The individual scores can be determined by a variety
of methods including statistical analyses of known binding
sites or experimental determinations of the binding contribu-
tions of each possible base. But all of these models assume that
the bases contribute independently to the binding, such that the
total energy of the interaction is the mere sum of the energies
of the individual contacts. Although not absolutely necessary,
this additivity assumption provides a simple model for
protein±DNA interactions and a convenient method to search
for new sites (2).

Two recent studies challenge the validity of this assumption
(3,4). The main conclusion from both of these studies, as
indicated in their titles, is that the additivity hypothesis is not
true and inter-dependent effects should be considered in order
to explain the protein±DNA interactions. In the ®rst of these
studies, Man and Stormo (3) found that positions 16 and 17 of
the DNA target interact non-independently with the Mnt
protein. They measured the binding af®nity of the wild-type
protein to all 16 possible dinucleotides at positions 16 and 17.
They found that when position 17 is anything but C then the
preference at position 16 changes from A to C (the wild-type
target contains AC at these two positions).

More recently, Bulyk et al. (4,5) studied the protein±DNA
interactions of the wild-type mouse EGR1 protein and four
mutants with amino acid substitutions in the middle ®nger.
Using microarray technology, they measured the DNA-binding
af®nity of the ®ve proteins to targets that included all 64
possible trinucleotides in their central positions, those that
interact directly with the middle ®nger according to the co-
crystal structure (6,7). From the analysis of the data they
concluded that the positions in the binding site do not contribute
independently to the binding af®nity, but that a dinucleotide
model provided a better ®t than a simple additive model.

In the present report, we review the data from both these
studies and we analyse them with various methods. Our
analysis con®rms that the additive models are not in absolute
agreement with the experimental data. However, we ®nd that
the additive model constitutes a very good approximation that
is suitable for many purposes; its usefulness can be appreci-
ated better if one considers the reduced number of parameters
that it requires.
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RESULTS

Calculation of the best additive model

We re-analyse the af®nity data from the study of Bulyk et al.
(4). Our analysis is based on the KA values that are available to
the public via their web pages. These data were derived from
in vitro protein binding experiments, in which the wild-type
mouse EGR1 protein and four mutants were displayed on
phage and then bound directly to double stranded DNA
microarrays (5). The four EGR variants have a number of
amino acid replacements in the second (middle) zinc ®nger.
The af®nity of the EGR1 and the derived proteins to the set of
64 DNA variants is measured. The 64 DNA targets differ in
the trinucleotide that constitutes the target for the middle
®nger of the EGR proteins (6,7). The microarray contains nine
replicas of those targets (except in the case of KASN protein,
where only ®ve replicates were measured). Using the intensity
of the signals they calculated the binding af®nity of the
corresponding interaction for each protein±trinucleotide target
combination.

Using these KA values, we calculate the best additive model
(BAM) for each of the replicas of the ®ve proteins. To do so,
we ®rst convert the KA values of each replica to probabilities
of binding. Assuming equilibrium, the probability that a given
site, Nk, will be bound by the protein, A, is proportional to their
association constant, KA(Nk, A). So, we can de®ne:

P(Nk | A) = [KA(Nk, A)]/[S64
k¢ = 1 KA(Nk¢, A)] 1

where the denominator is the partition function (in this case,
the sum of KA over all 64 trinucleotides).

Then we calculate the replica-speci®c BAMs for each
protein, using the probabilities. Initially, we calculate the
BAMs assuming that all three base positions are independent
(mononucleotide BAMs). For a particular protein, the
mononucleotide BAM of replica k is represented by 12
weights, Pk

ij, where i is the base position (i = 1,2,3) and j is the
nucleotide type ( j = A,C,G,T). The weights correspond to the
probabilities of interaction and are determined by summing
the corresponding probabilities as de®ned in equation 1. For
example, the parameter that corresponds to A at position 1 is
the sum of the probabilities of all sequences of the form ANN.
Note that under additivity the sum of the probabilities in each
position should be 1.0, hence the number of free parameters
needed to be estimated is 9.

In a similar way, we calculate the corresponding dinucle-
otide BAMs (data not shown). For each data set there are two
dinucleotide BAMs. For one of them, model 12*3, the two
initial positions are considered `linked', but the last position is
considered independent. In the other one, model 1*23, the ®rst
position is considered independent and the two last positions
are considered `linked'. We note that both dinucleotide
models contain 18 free parameters, which is twice as many
as the mononucleotide BAMs. One can also make a ®rst-order
Markov model (4), where the probability of a base at each
position depends on the previous base (27 or 36 parameters
depending on how the ®rst variable base is treated), but that
model was not used in the comparisons of the previous paper
(4) so we do not include it here.

The above procedure results in nine replica-speci®c weight
matrices for each of the mono and dinucleotide BAMs of each
of the proteins (®ve matrices in the case of the KASN protein).
The average values and the standard deviations of the matrices
of the mononucleotide BAMs are presented in Table 1.

Correlation between measured probability data and
predictions of the best additive model

Having estimated the parameters for the mono- and dinucle-
otide BAMs for each of the replicas of a protein, we calculate
(back) the probability of interaction of any given composite
trinucleotide target under the particular additive model. To
calculate the predicted probabilities for the trinucleotides
under each replica-speci®c model, we multiply the corres-
ponding position-speci®c probabilities of the independent
positions of the target positions of this model. For the
mononucleotide BAMs, the positions of the matrix correspond
to the positions in the DNA target. For the dinucleotide BAMs,
there are two independent `positions': one with 16 possible
states (all 16 dinucleotide combinations for the two `linked'
DNA positions) and one with four possible states (the
independent DNA position).

Each of the weight matrices that constitutes a replica-
speci®c BAM is used to calculate the predicted probabilities of
binding for the 64 trinucleotides. These probabilities are the

Table 1. The mononucleotide BAMs for the
®ve proteins

For each protein, nine replica-speci®c weight
matrices (®ve for the KASN protein) are
determined as we describe in the text. The
values presented in this ®gure are the averages
over all replicas for each protein. The
corresponding standard deviations are also
reported. The scores correspond to the position-
speci®c average probabilities of the bases.
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product of the probabilities of the corresponding bases or
dinucleotides in the independent positions (three independent
positions for the mononucleotide BAMs and two for the
dinucleotide ones). The nine sets of (replica-speci®c) pre-
dicted probabilities of a particular model of a protein (except
KASN which has only ®ve sets per model) are averaged and
these average values are compared with the average normal-
ised measured KA values using the correlation coef®cient. The
normalisation of the measured data ensures that the replica-
speci®c values will correspond to probabilities (before
averaging them). The calculated correlation coef®cients for
all proteins are presented in Table 2. In the previous study (4),
the average measured KA values were not normalised, which
accounts for the slight differences in correlations reported here
from those reported previously.

All calculated values are very similar to the ones reported in
Table 1 of the Bulyk et al. paper (4) (see also the legend of
Table 2). These data show a very good ®t of the experimental
values to the ones predicted by the mononucleotide BAMs
(0.88 or better for all but the KASN protein). Protein KASN
exhibits the weakest correlation (R = 0.695), but this is
expected because KASN has low speci®city to all DNA
targets. All its KA values are <4.7 3 10±3 nM±1 and the bases
are nearly equiprobable, especially in the ®rst two variable
DNA positions (Table 1). Its highest KA value is about 80
times smaller than the highest KA value of the wild-type
protein. Moreover, the correlations between the ®ve replicas
for the KASN protein have a mean value of only 0.67, while
for each of the other four proteins the mean correlation among
the nine replicas is between 0.91 and 0.99. In other words,
KASN is not only quite non-speci®c in its binding compared
with the other proteins, but the consistency between repeated
measurements is also not nearly as high.

In agreement with the previous study, we observe a better
performance of the dinucleotide models over the mononucle-
otide ones. However, the corrected data show that the
improvement in correlation coef®cient is small. That is, the

improvement of the dinucleotide models over the mono-
nucleotide ones for the four proteins that exhibit speci®c
binding is between 0.0 and 0.059. For the KASN protein,
the best dinucleotide model differs from the mononucleotide
one by 0.096. We also calculate the corresponding P-values
of the correlation coef®cients, using the two tailed
Student's t-distribution (8). In all cases, the null hypothesis
(i.e. R = 0.0) is rejected at a level of 0.02 (in the case of
KASN) or lower.

Models' comparison

The dinucleotide models are required to ®t the data at least as
well as the mononucleotide ones because of their extra
parameters. In the worst case, the extra parameters would
simply be set to zero and the models would ®t equally well.
But we can ask whether this better ®t is signi®cant with the use
of an appropriate F-test. Suppose that we have two models, M1

and M2, that ®t some experimental data and that model M2 has
k parameters more than model M1. If we denote by n the
number of parameters of model M2, the following statistic
follows (asymptotically) the F-distribution with k and
N ± n ± 1 degrees of freedom (9):

F = [(DM1
± DM2

)/k]/[DM2
/(N ± n ± 1)] 2

where N is the number of categories of the data and D denotes
the deviance (a log-likelihood ratio statistic) of the corres-
ponding models from the observed data. The deviance of each
model is two times the relative entropy (9) (see below for
de®nition of relative entropy). The statistic calculated from
equation 2 is used to determine the con®dence level for
rejecting the H0 hypothesis that the coef®cients of the
additional parameters of the model M2 are zero.

In our case, M1 and M2 are the mono- and dinucleotide
models, respectively, N = 64 (number of points to ®t), n = 18
(number of parameters of the dinucleotide models that are
calculated from the data) and k = 9 (additional parameters of
the dinucleotide models over the mononucleotide ones). Using
this F-statistic we ®nd that for half of the dinucleotide model
predictions the improvement over that of the mononucleotide
models is not signi®cant at the 0.01 level. In particular, the
dinucleotide models that are found to be signi®cantly better
than the mononucleotide ones are model 1*23 of the wild-type
protein and both dinucleotide models of the RGPD and LRHN
proteins. None of the other dinucleotide models is sig-
ni®cantly better than the mononucleotide ones even at the
0.05 level.

Figure 1 plots the probabilities from the mono- and the
dinucleotide BAMs compared with the measured prob-
abilities. The deviation of each model from the diagonal
shows its deviation from a perfect ®t to the data. Although the
models deviate from the perfect ®t to different degrees, they
generally present a good ®t of an additive, straight line,
especially for the high probability states. As expected, the low
probability states (i.e. non-speci®c binding) are `clustered'
together in all models and additivity is violated there. We note,
though, that by using any cut-off as low as 0.1, and often
lower, all models predict the same triplets as high and low
probability ones (except in the case of KASN protein where all
triplets have probability <0.05). Despite the fact that no
additive model ®ts the measured data perfectly and the fact

Table 2. Correlation coef®cients of the normalised measured KA values
compared with the predicted probabilities of the corresponding BAMs

Correlation coef®cients
Zif268 variant 1*2*3 12*3 1*23

Wild-type 0.973 0.986 0.987
RGPD 0.883 0.942 0.941
REDV 0.999 0.999 0.999
LRHN 0.927 0.978 0.956
KASN 0.695 0.791 0.718

For each protein, the BAMs of the three models (mononucleotide and
dinucleotide ones) are calculated as we describe in the text. The
mononucleotide BAM assumes additivity over all DNA positions (model
1*2*3), whereas the dinucleotide ones assume additivity over a single DNA
position and a dinucleotide (models 12*3 and 1*23). The probability of
interaction of the corresponding protein with each trinucleotide is estimated
from the BAMs. The reported correlation coef®cients are calculated
between these probabilities and the normalised measured KA data. The
normalisation ensures that all results correspond to probability values. The
minor differences observed between these values and the values reported by
Bulyk et al. (4) are due to this normalisation. Three cases were
miscalculated in the previous study (bold numbers). The corrected numbers,
using the same method, are 0.932 for the LRHN model 1*2*3, and 0.790
and 0.716 for the KASN models 12*3 and 1*23, respectively.
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that the dinucleotide models offer a better ®t to the measured
data, the mononucleotide additive models are nearly as good
as the dinucleotide ones in predicting and ranking the high
probability sites.

Relative entropy and information content: better criteria
for comparison

We also compare the observed and predicted normalised
average probability distributions of the trinucleotide targets
with respect to their relative entropy. The relative entropy is
de®ned as:

H�Q kP� �
X

i

Qi � log�Qi=Pi� 3

where Q and P are the two distributions to be compared (in our
case, Q and P will be the probability distributions of the
measured data and the additive models, respectively). If the
two distributions are similar, especially in the high probability
states, then their relative entropy will be close to zero [H(Q ||
P) > 0 with equality if and only if Q = P]. In a recent review
(10) we argued that the relative entropy is a more appropriate
measure of the goodness-of-®t of the af®nity data. The reason
is that it is most important for a model to be accurate in the

Figure 1. Probability plots. The probability distributions of the measured data (abscissas) and the BAM predictions (ordinates) are plotted for the EGR DNA-
binding proteins. The predictions are based on additive models under different levels of additivity: blue, red and green marks correspond to the 1*2*3, 12*3
and 1*23 models. Each scatter plot contains all 64 data points, although many data points may coincide. The grey diagonal line represents the ideally best ®t
of the predictions to the measurements. The scatter plot of protein KASN shows an example of failure of additive models to represent the real data of a
non-speci®c binding protein (note that all probability values, measured and predicted, are <0.05).
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high probability states. When the speci®city of the protein
decreases (and the af®nity is mainly determined by the non-
speci®c contacts), its precise prediction is of limited value. In
fact, relative entropy measures the difference between the true
and predicted values of the free energy of the entire system
(1,11) (see below). Unfortunately, at the time that the review
was written, the data of Bulyk et al. (4) were not available, so
we could only provide a ®ctitious example to illustrate the
point.

Relative entropy is a special case of a log-likelihood ratio,
which measures which of two probability distributions is a
better ®t to a particular dataset and by how much. Given a
dataset D = (d1,d2,¼,dk) and two probability distributions Q
and P, the likelihood ratio of generating the data from the two
distributions is:

LR�Q;P j D� �
Yk

i�1

�qi=pi�di 4

If we replace the observed data di by a frequency
distribution fi = di /N (where N is the total number of
observations, i.e. the sample size) and take the logarithm, then
we get the log-likelihood ratio:

LLR�Q;P j D� � N �
X

i

fi � ln�qi=pi� 5

This is the general form of the log-likelihood ratio which
serves to measure how much better (or worse) any probability
distribution ®ts a particular dataset than any other distribution.
The probability distribution with the best ®t, the maximum
likelihood distribution, is qi = fi. Therefore the relative entropy
between the maximum likelihood distribution, F, and any
other distribution, P, is:

H(F || P) = (1/N) ´ LLR(F,P | D) 6

The relative entropy also measures the difference in free
energy of the system compared with that predicted from the
model. The logarithms of the probabilities for binding (or,
equivalently, the KAs) are proportional to the binding energies.
If Ei is the true binding energy to site i (from the measured
distribution F) and EÃ i is the predicted energy (from the
distribution of the additive model P), then from equations 5
and 6 we have:

H�FkP� /
X

i

fi � � ÃEi ÿ Ei� 7

That is, the relative entropy is proportional to the average
(taken over all of the bound sites) of the discrepancy between
the true and predicted binding energies. Small values indicate
that the system as a whole is well approximated by the model.
If we consider all the models of a particular type (e.g. all
mononucleotide models or all dinucleotide models, etc.), then
the one with the lowest relative entropy is the one with the
maximum likelihood. The maximum likelihood model is what
we call BAM in this study.

We can use the relative entropy to compare a true
distribution with a model of that distribution in order to
measure how well the model approximates the true

distribution. Table 3 lists the relative entropies of the mono-
and dinucleotide models compared with the true trinucleotide
distribution for the EGR proteins. Except for the protein
KASN, which shows very little speci®city, the relative entropy
values are small compared with the information content (see
below), which implies that most of the information in the
binding sites is captured by the additive models. Furthermore,
in most cases the reduction of relative entropy for dinucleotide
models is modest, indicating that they offer only a small
improvement to the ®t.

A special case of relative entropy is the information content,
which is de®ned as the relative entropy of a distribution over
the background distribution:

IC�P� �
X

i

Pi � ln�Pi=P�i � 8

where P* is the background (reference) distribution and the
distribution from which we calculate the information content.
We note that in our case the information content of a
distribution differs from its entropy by a constant because P* is
constant (equiprobable background).

In the past, we have de®ned the information content of a
DNA-binding protein as the relative entropy between its
observed sequence frequencies and the genomic sequence
frequencies (1,12). The higher the information content the
more speci®c the protein is and less frequent its binding sites
in the genome. In pattern recognition methods that attempt to
identify the transcription factor binding sites in sets of co-
regulated genes, information content can be used as the
criterion to rank different alignments of sites and pick the most
signi®cant (13,14). In fact, information content does not give
an accurate P-value by itself, but it can be used to estimate the
P-value and E-value of an alignment (15). Information content
is usually measured using the observed frequencies at each
position in the binding site and the genomic base composition,
hence assuming additivity between the positions. But it can be
done at any level, from the individual bases to dinucleotides to
the complete binding sites. Table 4 lists the information
content for each of the ®ve EGR proteins as determined from
the mono-, di- and trinucleotide level distributions. The
trinucleotide information content is based on the measured
probability distribution over all 64 trinucleotides. These data
show that the information content based on mononucleotides
is usually fairly close to that based on the complete binding
sites.

Table 3. Relative entropies of the predicted versus measured probability
distributions for the mono- and dinucleotide models

Relative entropy
Zif268 variant 1*2*3 12*3 1*23

Wild-type 0.244 0.188 0.137
RGPD 0.336 0.192 0.213
REDV 0.136 0.096 0.098
LRHN 0.245 0.139 0.136
KASN 0.076 0.057 0.070

The distributions were calculated as described in the text. The improvement
of the dinucleotide models over the mononucleotide ones is generally small,
ranging from 0.019 (KASN protein) to 0.144 (RGPD protein) in relative
entropy units.
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Analysis of the data for the Mnt repressor-operator
protein

We also analyse the data presented by Man and Stormo (3)
(see Fig. 2), using the same methods. Our results agree with
the authors' that these data show a violation of additivity at
positions 16 and 17. However, the correlation coef®cient of
their calculated probabilities over all dinucleotides and the
ones obtained under additivity is 0.95 (P = 0.01). Moreover,
the relative entropy is 0.06, which shows that the BAM
does not deviate much from the real data in this case either.
The information content of the distribution of the BAM
for this protein is 0.62 and for the distribution of the real data
is 0.68.

DISCUSSION

The data published by Bulyk et al. (4) gives us the rare
opportunity to assess the signi®cance of the additivity
hypothesis in modelling protein±DNA interactions. From
that study and the one by Man and Stormo (3) it has become
clear that the BAM cannot generally provide a perfect ®t for
the data. However, we ®nd that in most of the studied cases,
the additive models constitute very good approximations of
the measured probabilities.

The extent of this goodness-of-®t varies from protein to
protein. The mononucleotide BAM for the protein REDV, for
example, shows a nearly perfect correlation with the experi-
mental data. In the case of protein KASN, though, we ®nd a
much poorer ®t, probably due to the low speci®city of this
protein. We also ®nd strong correlations between the
mononucleotide BAMs and the measured data for the other
three EGR proteins as well as for the Mnt protein. When
dinucleotide models are considered for the EGR proteins, we
®nd that the improvement of the correlation coef®cient is very
low (<0.1). The F-test shows that this small improvement is
statistically signi®cant at the 0.01 level for half of the
dinucleotide models.

Optimising energy versus optimising probability

There are other approaches for ®nding and testing additive
models to quantitative data. Stormo et al. (16) used multiple
regression to obtain parameters for mono- and dinucleotide
models for several different types of data. They showed that in
one case a mononucleotide model was quite good, but in
another a dinucleotide model was needed for an adequate ®t.
In a third case neither model provided a good ®t to the data.
Recently, Lee et al. (17) performed a multiple regression
analysis of the data from Bulyk et al. (4) that we have analysed
in this paper. Their conclusions are quite different from ours
because of the criteria used for determining the `best ®t'
model, and measuring how good the ®t is. As described in
detail in Stormo et al. and Lee et al. (16,17), linear multiple
regression ®nds the coef®cients for a set of features that
minimise the difference between the observed and the
predicted values. The features are the mono- and dinucleotides
(and higher levels can be treated in the same way) that occur in
the different positions in the binding sites. If these contribute
independently to the binding probability then those features
should contribute additively to the logarithm of the binding
probability. Essentially the model assumes that each feature
contributes some binding energy and those contributions sum
to give the total binding energy, which is proportional to the
logarithm of the binding probability. Analysis of variance
methods can be used to compare different models to determine
which is the best and which features contribute signi®cantly to
the ®t. Lee et al. (17) ®nd that all of the higher level models

Figure 2. A graphical representation of the non-independent effect of positions 16 and 17 of the Mnt DNA binding site. In the left graph, the probabilities
based on the measured KA values are plotted against the 1*2 additive model. In the case of Mnt, the deviation from additivity in the high probability states is
higher than that of Figure 1. However, the right graph plots the two probability distributions by dinucleotide target and shows that the additive model is in
pretty good agreement with the measured data. These graphs are based on the data reported in the study of Man and Stormo (3).

Table 4. The information content of the various distributions

Information content
Zif268 variant 1*2*3 12*3 1*23 measured

Wild-type 1.35 1.40 1.45 1.59
RGPD 0.77 0.93 0.91 1.13
REDV 2.94 3.00 3.00 3.14
LRHN 0.99 1.10 1.10 1.24
KASN 0.07 0.09 0.08 0.15

The information content of the best additive model distributions and the
measurements for the ®ve proteins were calculated as described in the text.
The increase of the information content between the mononucleotide BAMs
and the dinucleotide varies from protein to protein, with the lowest and
highest values being 1.9% (REDV) and 14.2% (RGPD), respectively,
compared with the maximum value (`measured'). Notably, KASN protein
has the lowest information content.
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provide signi®cant improvements over the mononucleotide
model.

Our conclusions differ because we use a very different
criterion for the best ®t. Consider a true probability distribu-
tion, Q, and a model that provides a predicted distribution, P.
In the regression method of Stormo et al. and Lee et al. (16,17)
the measure of ®tness is the sum of the squares of the
differences between the logarithms of the probabilities for all
of the data points:

M�Q;P� �
X

i

�lnQi ÿ lnPi�2 �
X

i

�ln�Qi=Pi��2 9

The best model is that with a minimum of M(Q,P). Note that
the main difference between this criterion and relative entropy
is that all of the sites contribute equally to the measure of
®tness, whereas relative entropy gives more weight to the
more probable binding sites. A weighted multiple regression
could be performed, but it was not included in the models
presented in the previous two studies (16,17). Relative entropy
is also closely related to c2 (9), another ®tness measure:

H�QkP� �
X

i

Qi ln�Qi=Pi� � �1=2�
X

i

��Qi ÿ Pi�2=Pi�

� �1=2N��2�Q;P� 10

where N is the sample size. The best model by the criterion of
minimum relative entropy is the one that maximises the
likelihood of the data.

Both the regression method and the maximum likelihood
method are standard statistical approaches for modelling
quantitative data and neither should be considered `right' or
`wrong'. They simply measure different things and use
different criteria for `best ®t'. The differences are clear upon
examining equations 9 and 10. Multiple regression, as applied
in Stormo et al. and Lee et al. (16,17), minimises the squared
differences in the logarithms of the binding probabilities

(equivalent to minimising the squared difference of the
binding energies), and does so without weighting any sites
more than others. The relative entropy approach obtains the
maximum likelihood model, which naturally emphasises the
high probability sites. Equation 7 also shows that relative
entropy measures the average discrepancy between the
measured and predicted binding energies.

Figure 3 compares the two approaches using the EGR1
binding data (4). Figure 3A shows the ®t of the mononucle-
otide models, using both approaches, to the logarithms of the
binding probabilities. The regression model (RM) is a better ®t
in this plot, primarily because its spread at the high values (i.e.
the low af®nity sites) is much less than that of the BAM. This
comes at the expense of having a much worse ®t to the low
energy (high af®nity) sites, but because there are many more
low af®nity sites than high af®nity ones, the overall ®t of the
RM is better in this plot. Figure 3B shows the ®t to the
probability data. Now the BAM is the much better ®t. In this
plot both models appear to ®t the low probability sites equally
well, because they are all clustered together in a small area in
the corner of the plot. But only the BAM gives a good ®t to the
high probability sites and RM is far off. We do not show RMs
for the dinucleotide models that ®t better, because our main
point is that even mononucleotide models can give quite good
®ts by the criterion of minimum relative entropy (or maximum
likelihood). Because low af®nity interactions are largely due
to non-speci®c contacts we do not expect them to be
determined by additive contributions from the bases.
Furthermore, for purposes of predicting new binding sites in
a genome sequence, we are primarily interested in those sites
with high probabilities of binding. Those are also the sites that
have the dominant effect on the free energy of the entire
system. The relative entropy method emphasises the above
criteria, which we consider to be most important for prediction
of DNA binding sites. Thus, we use this method to obtain what
we call the BAMs.

Figure 3. Probability and log-probability plots. Scatter plots of the negative logarithms (A) and the predicted binding probabilities (B) for the mononucleotide
models that provide `best ®t' to the data, according to different criteria. The BAM that we calculate in this paper minimises the squared difference between
the predicted and the measured probabilities in the data. The regression model (RM) minimises the squared difference between the predicted and the measured
log-probabilities of the data (equivalent to energies). This model was calculated using the BLSS package (42) on the normalised average KA values of the
wild-type EGR protein. Methods for calculating such regression models also exist in the literature (16,17). The two plots show that BAM is better than RM at
predicting the high probability targets, whereas RM better ®ts the high log-probability ones (equivalent to the high energies). The diagonals (straight lines)
correspond to the measured values.
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Advantages of the additive models

There are two types of advantage in using additive models.
The ®rst is the computational performance in the search for
binding sites of a protein. With fewer parameters, the additive
models can search the sequence sets faster. In a simple
implementation, a dinucleotide model has four times as many
parameters as a mononucleotide matrix and so searches could
take four times as long. However, this is not the most
important advantage of the additive models. Faster algorithm
implementations can be developed. For example, since
searches usually employ a threshold score, and identify all
sites above the cut-off, it is easy to pre-compute the set of all
sequences that exceed the threshold and search for them
simultaneously using ®nite automata (18). Even using simple
search methods, the speed advantage may not be signi®cant in
many cases, and it may be worth the extra time required to
have more accurate predictions.

The second advantage is likely to be more important in
practice, and that is the amount of data required to estimate
accurately the extra parameters of the more complex models.
The number of parameters increases by a factor of four for
each increase in the level of the model of the DNA target; for
instance, from mononucleotides to dinucleotides, or dinucle-
otides to trinucleotides. Collecting the extra quantitative
af®nity data by conventional means would be laborious and
expensive, but new high throughput methods can collect much
more data ef®ciently. The array based method of Bulyk et al.
(4,5) can provide quantitative binding data for many indi-
vidual sites simultaneously. For long binding sites, such as
10 bp zinc-®nger sites, all possible sites (>106) cannot be
included on the array, as it was for all 64 triplets interacting
with the middle ®nger. But a suf®ciently large number of
target sites can be included such that accurate high-level
models will be obtainable. A different approach, combining
in vitro selection from pools of randomised oligonucleotides
(i.e. SELEX), followed by quantitative, multiple ¯uorescence,
relative af®nity assays (3) can return many binding af®nity
measurements in a single gel. Because the SELEX step in the
procedure returns those sites with the highest af®nity (the
actual number depending on how many rounds of selection are
performed and how many selected sites are sequenced),
determining their relative af®nities will usually be suf®cient
to obtain accurate mononucleotide models as well as
dinucleotide models for important, non-additive interactions.

Nevertheless, the most common method of estimating
binding site models for DNA-binding proteins is likely to
remain statistical analyses of known and putative binding
sites. Given an alignment of known binding sites, simple log-
odds weight matrices (reviewed in 1) provide additive
mononucleotide models for the speci®city of the protein that
can be effective in searching for new sites even if based on
only a few, 10±20, known sites. Of course, more known sites
will provide more accurate parameter estimates, but it is rare
to have enough sites to provide accurate estimates of the four
times more parameters in a dinucleotide model. Occasionally
there is a suf®cient number of examples to build higher-level
models, which can be useful. Zhang and Marr (19) made a
dinucleotide weight matrix for splice sites and showed that it
had a small improvement in the accuracy of predicting splice
sites in genomic DNA. Burge and Karlin (20), in the program

GenScan, use a more complicated non-additive model for
splice site prediction. That model is based on a decision tree
that builds separate weight matrices depending on the base
occurrences at speci®c positions. While that model has only a
small improvement in the prediction of individual splice sites,
it helps signi®cantly in the prediction of complete gene
structures. In those cases the extra parameters could be
estimated accurately because there are many hundreds (19) or
thousands (20) of known splice sites. For most transcription
factors the number of known sites is less than one hundred,
and often only a few (21). In most such cases one is limited in
practice to simple additive models. But the results presented
here show that, even in cases where additivity is clearly
violated, additive models can still be effective search tools.

Another currently common method for estimating binding
site patterns is to employ pattern discovery algorithms on sets
of promoter regions from co-regulated genes. A variety of
algorithms exist that try to discover the binding sites
responsible for the co-regulation (reviewed in 1). Many of
those methods model the binding sites as weight matrices, or
additive models, and attempt to ®nd the alignment of sites with
the maximum information content, or some related likelihood
measure. Example algorithms include greedy (13,15), expect-
ation-maximization (22,23) and Gibbs' sampling (14,24±26).
It would be possible to modify those algorithms to use
dinucleotide, or even higher-level, models for the interactions,
but it is unlikely that will improve their performance, which is
already quite good. In most cases these methods are able to
identify known binding sites from the appropriate collections
of co-regulated promoters. They tend to fail, and this has been
examined most carefully on simulated data (15,27,28), when
the sites themselves have such low information content, and/or
the promoter regions that are being searched are so long, that
there is a high probability of ®nding a spurious alignment of
sites with equal or greater information content by chance. The
fact that the higher-level models have slightly increased
information content might make them more easily identi®ed.
However, the extra parameters will also increase the infor-
mation content obtainable by chance. Because the number of
parameters increases by almost four at each higher level, and
the amount of information gained (at least in the examples
examined so far) is a small fraction of the total, the higher-
level models may actually perform worse than the simple
additive ones. In cases where there are very dramatic non-
additive effects, and much of the total information is lost in
mononucleotide models, it would be effective to use higher-
level models. We know of no examples like that [except for
RNA binding sites where the secondary structure is important
for the binding (29)] and hence we expect that the simple
models will remain the most useful for ®nding common
binding sites in promoter regions. Of course, once the sites are
identi®ed and aligned, higher order information may be
extracted from them and used to search for new sites with,
perhaps, some improvement in accuracy.

Models for a DNA±protein recognition `code' typically use
the additivity assumption. There are a number of approaches
that have been followed in the development of such `codes'. In
the most simple one, the model consists of a list of observed
base±amino acid contacts. The contacts catalogued in this
way are usually family-speci®c and position dependent. A
protein±DNA pair is evaluated for the potentials of interaction
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with respect to the number of `valid' contacts that the model
can predict (i.e. the ones included in the list). This is the
qualitative model that was ®rst presented by Choo and Klug
(30,31) and later by Pabo and co-workers (32±34). A different
type of modelling, the quantitative models, assign a score to
each contact that can be used to rank all possible targets. The
score is obtained from a weight matrix that represents
the single base±amino acid potentials of the interactions.
Quantitative models have been developed by several groups
(35±41) and their main differences are in the way that they
estimate the base±amino acid potentials.

In general, these models assume that the base±amino acid
interactions are energetically additive. The additivity assump-
tion is applied to both the protein and the DNA. In this paper
we have shown that assuming additivity between the positions
in the DNA binding sites is a reasonable approximation, at
least for the cases that have been carefully measured. There is
much less data about additivity on the protein, whether the
effects of changing two amino acids can be well approximated
by the sum of their individual effects. The fact that reasonably
good predictive models can be obtained from such an
assumption, at least for some proteins (41), provides hope
that simple models will be useful recognition codes. If not, the
amount of data needed to estimate the parameters will grow
enormously. Increasing from a mononucleotide to a dinucle-
otide model increases the number of parameters by a factor of
four, but increasing from a mono-amino acid model to a di-
amino acid model increases the parameter number by a factor
of 20. Furthermore, the simple model with one amino acid
interacting with one base pair has a total of 80 parameters, one
for each possible combination. But if we need to model all
dinucleotides interacting with all di-amino acids, the number
of parameters grows to 6400 per interaction. In such cases the
additivity assumption greatly reduces the number of para-
meters to be estimated, and therefore the amount of data
needed. But the real issue is whether such models provide
reasonable approximations to reality. They need not be exactly
correct to be useful, merely accurate enough to provide
speci®c hypotheses that can be tested in order to validate or
re®ne the models and their predictions.
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