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Summary
Transcriptional regulation of all genes is initiated by the
specific bindingof regulatoryproteins called transcription
factors to specific sites on DNA called promoter regions.
Transcription factors employ a variety of mechanisms to
recognise their DNA target sites. In the last few decades,
attempts have been made to describe these mechanisms
by general sets of rules and associated models. We give
an overview of these models, starting with a historical
review of the somewhat controversial issue of a ‘‘recogni-
tion code’’ governing protein–DNA interaction. We then
present a probabilistic framework in which advantages
and disadvantages of various models can be discussed.
Finally, we conclude that simplifying assumptions about
additivity of interactions are sufficiently justified in many
situations (and can be suitably extended in other situa-
tions) to allow a unifying concept of a ‘‘probabilistic code’’
for protein–DNA recognition to be defined. BioEssays
24:466–475, 2002.� 2002 Wiley Periodicals, Inc.

Introduction: some notes of historical interest

How do transcription factors recognise their DNA target sites?

25 years have elapsed since the work of Seeman et al.,(1)

which initiated the study of the molecular basis of this

recognition. Upon analysing the stereochemical properties of

the residues, they noticed that two or more hydrogen bonds

are required for the efficient discrimination between DNA

bases by certain amino acids. In particular, they predicted that

Arg, if placed appropriately, could specifically recognise

guanine; and, similarly, Asn or Gln could recognise adenine.

Interestingly,Arg,G is the most common contact found in the

crystal structures today.(2)

In later years, the crystal structures of Cro(3) and cI (4)

repressors of bacteriophage lambda and the CAP protein of

E. coli (5) provided clues as to what the molecular mechanisms

of the interactions could be and raised hopes that a simple set

of rules might exist in nature that can adequately explain those

interactions. In 1984, Pabo and Sauer(6) first proposed the

term ‘‘Recognition Code’’ to describe such rules. However,

they noted that, unlike the genetic code, the protein–DNA

‘‘recognition code’’ is degenerate in both directions. In other

words, each DNA base could be recognised by a limited variety

of amino acids and vice versa. In their review article, they

modelled an additional possible contact: Ser,A with two

hydrogen bonds (although, serine can act as either hydrogen-

bond donor or acceptor; thus, its contribution to base

specificity is more limited, Ref. 7).

Once the crystal structures of a handful of protein–DNA

complexes became available, it was realised that transcription

factors employ a variety of strategies to recognise their target

sequences. That led Matthews to conclude that there is ‘‘no

code for [protein–DNA] recognition’’ ;(8) or more specifically,

that no deterministic protein–DNA recognition code, in ana-

logy to the genetic code, exists. However, the determinism of

the genetic code is exhibited in one way only, i.e., knowing the

nucleotide triplets we can deduce the amino acid sequence.

The reverse (from the amino acids to the nucleotide sequence)

is probabilistic. A recognition code that is probabilistic in both

directions, P-code, is supported by the work of several groups

that have noticed clear base–amino acid preferences.(2,9–13)

Gene regulation is a complicated process. There are many

important issues that deserve further investigation: protein–

protein interactions and co-regulation of a gene by more than

one transcription factor are merely two examples. However,

this article focuses on the methods that have been used to

model protein–DNA interactions and give some insights to

some complicating factors, such as energetic additivity.

We start with a description of the problem of DNA specificity

from the thermodynamic point of view. Then we describe the

weight matrix methodology that has been widely used in

modelling of binding sites and protein–DNA interactions. The

problem of identification of transcription factor binding sites

serves as an example to introduce the reader to basic aspects

of weight matrix modelling. After describing the modelling of

DNA-binding sites (of a ‘‘fixed’’ protein) via weight matrices,

we extend this notion to include variation at the protein

level. This leads us to a two-way table that associates bases

and amino acids. Essentially all methods of modelling protein–

DNA interactions use similar tables. Their differences are

mainly in the number of parameters that needed to be
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estimated (data compression) and the way that these are

estimated. We describe the basic characteristics of the

qualitative and three quantitative methods that are currently

used for such modelling.

The thermodynamics of

protein–DNA interactions

DNA recognition by a particular regulatory protein can be a

complex, multistep process (for a review see Ref. 14). Never-

theless, without loss of generality, it can be viewed as a che-

mical process, in which the rate of the reaction is limited by the

rate that the two components (i.e., the protein and the DNA

site) are brought together via diffusion. Once brought together

into a protein–DNA complex, the dissociation rate depends on

the affinity, or chemical complementarity, between them. In

general, the higher the number of favourable chemical con-

tacts between them the lower the dissociation rate and higher

the affinity.

If we denote Hi the binding energy for any given DNA

site Si, then the probability that the protein would be bound to

Si (at equilibrium) is given by the Boltzmann distribution(15):

Pi ¼
e�Hi

Z
ð1Þ

where Z is the partition function and is defined as the sum of

the exp(�Hx) over all possible sites Sx:

Z �
X

x

e�Hx

Note that, in equation 1, we omitted the temperature factor kBT

from the denominator of the energetic exponential. By doing

this we assume that the temperature is constant throughout

the binding process and that what we call ‘‘energy values’’ are

expressed in (kB T ) units.

The average binding energy for this protein over all sites

Si would be:

Hh i ¼
X

Pi � Hi ¼ �
X

i

ðPi � ln Pi Þ � ln Z ð2Þ

The sum on the right side of the equation 2 is called the entropy

of the probability distribution.

Suppose that we measure the binding energy of a given

protein to all its possible DNA targets. These energies can

form a probability distribution, P, via equation 1. Now let us

assume that, instead of measuring directly all these energies,

we estimated their values from a small set of measurements

according to certain rules. Then the estimated values would

form another probability distribution, Q, which generally would

differ from P. A very useful measure of difference between

two probability distributions is the relative entropy, which is

defined as:

HðP ;QÞ � �
X

i

Pi �ln
Pi

Qi

If the two distributions, P and Q, are similar in the high

probability states then their relative entropy is close to zero.

This formalisation makes clear the relation between the

interaction energies and the specificity of a protein to certain

DNA targets (‘‘DNA recognition’’). The lower the interaction

energies are, the higher the probability that the particular

target will be selected. It is also clear from this formalism that

only the difference in energies matters to the probability of

binding. Adding a constant term to all energies does not

change the binding probability of any sequence (equation 1). In

fact, we are free to choose the base line of energy such that ln

Z¼ 0, in which case the average energy is equal to the entropy

of the system, a classic result from thermodynamics. More-

over, the probability of equation 1 can also be viewed as a

reflection of the preferences for certain targets by this protein;

the higher the probability, the more frequently this target will be

selected compared to the other targets. This idea provided the

basis for the use of weight matrices in the study of various

biological phenomena, including the modelling of regulatory

regions and protein DNA interactions. Therefore, we present

weight matrices in more detail in the next section.

Equation 1 is a simplified version of the one presented in

Benos et al.(16) in that it does not include the relative frequen-

cies of the different binding site types. However, these fre-

quencies needed not be included if the different target site

types are equiprobable or if Si enumerates all possible DNA

sites (instead of types of DNA sites). From a genomic point of

view, the distinction is clear: two genes might have identical

DNA binding sites, but we are interested to know when a

particular one of them is bound.

It is important to realise the difference between affinity and

specificity. The former is determined by chemical comple-

mentarity that a protein shows to a piece of DNA. This com-

plementarity exists even in non-specific binding. In contrast,

specificity is a measure of selective binding of the protein to

‘‘preferred’’ DNA targets. It is determined by the difference in

affinity to different sequences. Hydrogen bonding is the major

element in this sequence-specific recognition, since both

bases and amino acids have hydrogen donor/acceptor

potentials. Water-mediated bonds and van der Waals inter-

actions also play a very important role in DNA binding. They

are estimated to constitute approximately 15% and 65% of all

contacts, respectively. However, their importance lies more on

the stabilisation of the protein–DNA complex rather than in

the specific recognition of the DNA target.(13) Finally, hydro-

phobic interactions and DNA conformation also contribute to

the binding. But, although they can be sequence dependent

(to some extent), they are also not sufficiently limiting by

themselves for specific DNA recognition.(17)

Weight matrices in modelling

Weight matrices are very popular in the modelling of various

biological phenomena. In the study of regulatory regions, for
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example, they were first employed as a method to distinguish

functional binding sites from ‘‘non-functional’’ (but similar)

ones in genomic DNA.(18) Later, they were put in a more

statistical framework, having their elements derived from

binding site examples.(19–21) The relationships between the

probability of occurrence of each base in a particular position,

its energetic contribution to the total binding energy and

the information content of the binding sites were explored

further in the following years (reviewed in Ref. 22). This

general model had been the basis for various algorithms that

try to identify regulatory sites in the promoter regions of

coregulated genes.(23–26)

Although the identification of regulatory regions in genomic

regions is not the main topic of this article, we use it as an

example to introduce the reader to some important general

concepts of modelling via weight matrices. Figure 1A shows a

weight matrix for the DNA-binding site of a hypothetical

protein. This toy binding site is 3 bp long and each column

contains the relative energetic potentials for each of the four

bases in the corresponding position. These values can be

experimentally measured, but this usually requires laborious

experiments in which the target DNA positions are system-

atically varied to all four bases (one position at a time; see

below). Alternatively, one can estimate these parameters from

a set of known (aligned) binding sites. In this case, the binding

energy of every residue in each base position is estimated by

the logarithm of its frequency, normalised with respect to the

maximum frequency for this position. Hence, the base with

the highest frequency has a binding energy of zero and all the

rest have a positive value (see also Section ‘‘The thermo-

dynamics of protein–DNA interactions’’). Note that the con-

vention that we adopt assigns lower energy values to stronger

binding. Thus, the ‘‘consensus’’ binding site in our hypothetical

example is AGT (Fig. 1).

Selecting nucleotides: does additivity hold?

A common feature of the regulatory region models (as well

as the ones of the protein–DNA interactions) is the assump-

tion that all base–amino acid contacts are contributing

independently and, therefore, additively to the total binding

energy. Equivalently, the total probability of the binding site is

simply the product of the binding probabilities in each position

(see also equation 1). Assuming that additivity holds, one can

calculate the total binding energy for each of the 3 bp long

binding sites. The corresponding values are presented in the

first column of Fig. 1B. The complete list of measured energies

requires a 43¼ 64 long table that was ‘‘compressed’’ into the

4� 3 elements of Fig. 1A. This compression is only accurate if

the additivity assumption is valid. We know that additivity is not

exactly true. Thus, the additive model comprises an approx-

imation of the true binding energies of a protein to different

DNA sequences. How good an approximation it is depends on

the protein that is being modelled. And how useful it is depends

on what use is made of it. For many proteins, this model

appears to be accurate enough for the prediction of binding

sites in genomic DNA sequences.(27,28)

To demonstrate what effect non-additive interactions could

have in the study of protein–DNA recognition, let us consider

that the energy data presented in Fig. 1A were determined

experimentally for each base in each position. This can be

done, for example, by systematically varying each position to

all four bases, whereas the other two positions are held fixed

to the preferred ones (i.e., A, G and T for positions 1, 2 and 3,

respectively). Similar experiments have been performed in the

past.(29–31) If additivity holds, then from the data of Fig. 1A one

could calculate the binding energy of every possible 3 bp long

target sequence, by simply summing the energies associated

with each base at each position. The result is shown in the first

column of Fig. 1B (‘‘additive energy’’).

In reality, however, the true binding energy tends to have an

‘‘upper bound’’, which is usually derived from the non-specific

contacts (mostly to the DNA backbone). In other words, even

in complete lack of chemical specific complementarity to the

base pairs, the protein still displays some affinity to the DNA

target. Let us assume that, in our example, this upper bound

of the binding energy is 3.0 and the real binding energies

(i.e., measured directly for each of the 64 DNA targets) are the

ones presented in column 2 of Fig. 1B (‘‘measured energy’’).

Figure 1. A: The binding energy matrix for a
hypothetical protein. In this example, the DNA target

size is 3 bases long. The numbers are usually cal-

culated from a set of aligned binding sites and

correspond to the logarithm of the normalised fre-
quencies. B: Example of relative energy values of the

interactions between the hypothetical protein and all

its 3 bp long DNA targets. The first column presents
the energy values that the protein has towards all

possible 3-bp long targets under additivity. These

values have been calculated from the data of A. The

second column contains ‘‘experimentally’’ defined energy values. This hypothetical example shows a case where additivity holds only on
the lower energy (i.e., higher affinity) states. In this table, R denotes A or G and H denotes A or C or T.
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Figure 2 illustrates one of the ways that the additivity is

violated. The predicted energy values have been plotted

against themselves and against the observed ones. The

straight line represents the additive model and the curved

is derived from the measured energies of our hypothetical

example. This example shows a linear region and a plateau,

not unlike many real proteins.(29,32) Additivity holds for the low

energy sites, those with energies most similar to the preferred

sequence, but has a non-specific energy that tends to 3.0, for

triplets with predicted energies greater than 1.5. This means

that over 90% of the predicted energies are wrong and many

of them significantly so, by up to 3.0 units.

Is the additive model (presented as the straight-line graph

in Fig. 2) a good approximation for this protein? By conven-

tional ‘‘goodness-of-fit’’ criteria, it may not look like a good

approximation, because many of the points deviate far from

the straight line. Based on this observation, one may conclude

that there is no additive model, of whatever slope, that will be a

good fit to the experimental data. However, in our opinion, this

is not the most appropriate criterion to use. There are three

other, perhaps more suitable, criteria that could be used (they

are also closely related to each other): (1) the difference in

observed and predicted free energy of the system, (2) the

probability that the preferred sites are bound, and (3) the

concentration of protein necessary to achieve a desired level

of saturation of the preferred sites.

Note that, for our hypothetical example, the entropy for

the probability distribution of the ‘‘real’’ (i.e., measured) values

is 3.65 (as defined by equation 2 with ln Z¼ 0), whereas

the additivity model gives 3.19. The relative entropy of the

two distributions is 0.18. But we can find an even better

additive model that minimises the difference between the two

probability distributions (best additive model ). This model has

an entropy of 3.71, with relative entropy only 0.05.

This is really a quite good fit to the real data, which can be

better appreciated by the other criteria mentioned above. The

true probability of the protein binding to the preferred site is

13.8%, and the best additive model predicts 10.4%. If we as-

sume that the DNA targets are equally randomised, then the

number of protein molecules needed to have the preferred site

95% saturated can be estimated by simulation experiments.

This number is 16 for the ‘‘measured’’ values of Fig. 1B and

Ref. 20 for the best additive model. Similar calculations based

on the Mnt protein are provided in Ref. 31 (The ideas described

here also hold in the case of biased representation of the DNA

targets, but with slightly more complicated formulas(16)).

The point of this exercise is to indicate that protein–DNA

interactions may be far from additive overall, but still be well

represented by an additive model, provided that the non-

additivity shows up mainly in the low-affinity sites. If non-

additivity shows up strongly among the high-affinity sites then

the additive model will probably be inadequate for most pur-

poses. In such cases, more-complex models can be used. For

instance, instead of assigning an energy value for each base at

each position, we could use a model that assigns an energy

value for each di-nucleotide. If the non-additivity were due pri-

marily to interactions between adjacent bases, then this model

would accurately capture those contributions and provide a

representative, additive model.(33,34)

The important issue in deciding whether an additive model

is appropriate is the trade off between the loss of information,

as measured by the difference in true and predicted average

binding energies, and the reduction in the number of para-

meters (i.e., compression) of the representation. In the hypo-

thetical protein example, the true binding energies comprise

64 parameters (or, rather, 63, since they are relative to the

preferred site). The model using the additive energy matrix has

only 12 parameters (really just 9). This is a large compression

in the representation, which costs a relatively small amount of

accuracy in the prediction of the behaviour of the system.

A protein that binds to l-long sequences has 4l binding ener-

gies, but an additive model has only 4� l parameters. As long

as the error is small, this is a very ‘‘economical’’ representation.

Selecting proteins

In the above example, the protein was considered fixed and

measurements were made to all possible DNA-binding sites.

The converse is also doable, although more laborious; there-

fore, fewer examples exist in the literature.(35–37) In these

cases, binding energy measurements are performed for every

possible protein sequence to a particular (fixed) DNA target.

However, usually the only part of the protein that is randomised

are the amino acid positions involved in sequence-specific

binding. The rest of the protein is usually held constant, so that

it folds properly and interacts with the DNA backbone in the

same way as the wild-type one. The amino acid positions that

vary are the ones that interact directly with the DNA bases,

   

Figure 2. Graph of the experimentally measured energy

values (curved line) and the ones calculated from Fig. 1A

under additivity (straight line). The plot is based on a hypo-
thetical example.
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typically a small number (about the same number as the bases

in the target site).

If we consider that, in the example of the previous para-

graph, the protein uses three amino acids for DNA recognition,

then the list of all possible proteins (with respect to these amino

acid positions) would be ‘‘just’’ 203¼ 8,000. Although this is a

large number, it is enormously smaller than all possible protein

sequences of typical lengths. If we employ the same additive

model that we did for the variable DNA to these experiments,

we will have to estimate only 20� l parameters, where l is the

number of ‘‘contacting’’ amino acid positions. In our example,

this number would be 60.

However, what is not known is how good a representation

is the additive model for the amino acids. Because of the in-

teractions between the amino acid side chains, the amino acid

positions might be less independent than the DNA ones. At

this time, there is not enough data to answer this question in

general. And as before, the criteria to be used are the trade-off

between the accuracy and the compression in the representa-

tion. If non-additivity shows up mainly for the low-affinity sequ-

ences, we may still get good additive models. If this is not the

case, then more complex models may be needed, but still

employing significantly less parameters than the number of

all possible sequences. For example, the number of para-

meters for a di-amino acids model over a 3-residue ‘‘protein’’ is

202� 2¼ 800, while the total number of possible sequences is

8,000. Longer proteins result in greater compression savings.

However, we do not know a prioriwhat order of compression is

needed.

Modelling interactions both ways

In the previous paragraphs, we described the general features

of additive, energetic/probabilistic models of DNA–protein

interactions where one component, either the DNA or the

protein, is held fixed and the other varies. We can easily extend

the model to ‘‘two dimensions’’ where both the DNA and pro-

tein are variable. In fact, the full interaction of all proteins of a

particular type to all possible DNA targets can be described in

terms of a gigantic matrix that contains the binding energy of

every protein sequence to every DNA sequence. For our

hypothetical example (three amino acids contact three bases),

this would mean a 43� 203 table of binding energies, which

represents a number of experiments that is easier said than

done. Employing the additivity assumption causes a simplifi-

cation to the problem at the expense of some loss of infor-

mation. Indeed, in such a case, one needs to estimate ‘‘only’’

(4� 3)� (20� 3) parameters. That is, of course, if one con-

siders all possible interactions between the three amino acids

and the three bases. If the mode of interactions is the ‘‘one-to-

one’’ (i.e., each amino acid interacts with one base position

only and vice versa), then the parameters in the model are only

3� 4� 20. It remains to be determined how accurate such a

model can be.

From this point of view, it is clear that the additivity as-

sumption represents a compression of the information in the

data. In other words, we lose some information in order to

reduce the number of parameters that we need to estimate. In

the following sections, we will describe methods that have

been developed to estimate different numbers of parameters

in similar weight matrices.

Finally, we must note another assumption/simplification

that one silently makes, when protein–DNA interactions are

modelled in this way: i.e., the amino acid substitutions in a

protein do not alter the bonding ‘‘recognition scheme’’ to the

DNA. Or, they do so only to the extent that the specificity of the

protein is maintained. But this is not exactly true always. For

example, it has been reported that, in some cases, modest

changes in the docking arrangement are utilised to accom-

modate new side chain–base and side chain–phosphate

interactions.(7) It is not known how much these ‘‘docking re-

arrangements’’ alter the overall binding specificity. We know,

for example, that the vast majority of the protein–DNA con-

tacts are non-specific ones, mainly to the DNA backbone.(13)

So, it might be that this is a similar situation to the deviation

from additivity that we described before. Nevertheless, this

phenomenon is expected to be family specific. Thus, we might

end up modelling a protein family with multiple ‘‘codes’’, de-

pending on the residues present in some key amino acid

positions. This is a very interesting subject that is open for

further investigation.

Estimating the parameters

During the last 10 years, there have been a number of attempts

to model protein–DNA interactions. All of the models devel-

oped so far have focused on additive interactions. There are

many reasons for making this choice. A key reason is that

currently available data are far from enough to model putative

non-additive interactions accurately. Also, in the previous

section we explained why, for modelling purposes, it is only

important that the additivity assumption is approximately true

for the high affinity binding sites.

Depending on the representation of the interactions,

models can be classified into two types: qualitative and quan-

titative. We call a model qualitative when it represents

the interactions in a binary way (i.e., a protein does or does

not bind to a DNA target sequence). By contrast, a model is

called quantitative if it provides a measure for the binding

affinity.

Figure 3 presents an example of the two model types, in

the form of weight matrices. Both models refer to the Early

Growth Response (EGR) family of transcription factors (also

known as Zif268, Krox, NGFI-A). The EGR proteins belong

to the Cys2His2 zinc-finger protein family. They were origi-

nally identified in mammals, but homologous proteins have

been cloned in a variety of species (including zebrafish and

Xenopus laevis). Their DNA target is recognised via three

Functional genomics and bioinformatics

470 BioEssays 24.5



highly conserved a-helices. The structure of the three zinc-

fingers of the protein bound to the consensus DNA sequence

was initially solved crystallographically at 2.1Å(38) and sub-

sequently refined to 1.6Å.(39) The target site is 10 bp long,

where each finger contacts four of these bases (with one base

overlap between the fingers).(39) The topology of the mole-

cules in the solved crystal structure showed that the four

‘‘critical’’ amino acids of a finger could contact one base each

on the target site (‘‘one-to-one’’ mode of interactions). The

shaded areas in Fig. 3 represent the contacting scheme. If we

lacked the crystal structure, a complete model should include

the additional possible contacts (white submatrices in Fig. 3;

‘‘all-to-all’’ mode of interactions).

The basic difference between qualitative and quantitative

models is that the former merely consist of a list of all observed

contacts, whereas the latter provide a measure of the affinity of

these contacts. As is obvious from Fig. 3, any quantitative

model can be transformed into qualitative by setting a thre-

shold to separate ‘‘binding’’ from ‘‘no binding’’. Various quan-

titative models differ in the way that they determine the affinity

of the contacts (i.e., parameter estimation).

Qualitative modelling

In 1992, Desjarlais and Berg(10) studied the DNA specificity of

a number of Sp1-derived proteins and they organised their

data into a ‘‘set of rules’’. Using their table, one could predict

the amino acids of a putative Sp1-derived protein that would

bind with high specificity a given tri-nucleotide of the form

GNK (N:A or C or G or T;K:G or T ) and vice versa. Although

they performed some quantitative experiments, they did not

incorporate them into their model, thus their model remained

qualitative.

More recently, Choo and Klug initially(40,41) and Pabo and

colleagues later(42,43) proposed a qualitative model to explain/

predict the DNA recognition for members of the EGR protein

family. An example of the qualitative model proposed by the

two groups is presented in Fig. 3A. It consists of a list of all

amino acids that have been found to contact particular bases

and it is position specific. For example, lysine at positions þ3

andþ6 has been found to contact guanine (at the correspond-

ing nucleotide positions 2 and 1); whereas lysine at positionþ2

prefers thymine (at nucleotide position 4).

Since the tabulated base–amino acid interaction data are

position-specific, this model has inherent both chemical and

stereochemical properties of the protein and the DNA (see

also Section ‘‘Chemical and stereochemical rules’’). In fact,

Wolfe et al.(43) used it to predict DNA-binding specificities of

three EGR-derived proteins. In each of the three cases, the

model predicted correctly six out of nine contacts.

The disadvantage of a qualitative model is, of course, that it

cannot make quantitative predictions. For instance, in the

example of Fig. 3, does Asp in positions þ2, �1 and þ3 bind

with the same strength the corresponding bases? A limitation

of this method is its dependence on structural as well as other

experimental data for making efficient predictions.

Chemical and stereochemical rules

Suzuki and his co-workers have proposed a method to model

the protein–DNA interactions in a quantitative way, based on

a set of chemical and stereochemical rules that they pre-

sented.(27,28) According to that model, a chemicalmerit point is

assigned for each permissible base–amino acid contact.

These points are defined in a semi-arbitrary way from the

chemical properties of the residues. Similarly, a stereochemi-

cal merit point is assigned for each base–amino acid contact

position, based on information from the co-crystal structures

and the size of amino acids (Fig. 4). The stereochemical merit

points have the values of 5 or 10, depending on the type of

Figure 3. Schematic representation of the

qualitative and the quantitative models for the

EGR protein family. Each zinc finger employs

four amino acids (positions �1, þ2, þ3 and þ6
of the a-helix respectively) to recognise a 4 bp

long target site. The qualitative model (A) con-

sists of a look-up table that lists all observed
base-amino acid contacts. On the other hand, a

quantitative model (B) provides a score for each

of those contacts (for simplicity, we have omitted

the actual values from this table; see Fig. 4 for
an example). Obviously, the qualitative model is

a degenerate quantitative, with the scores being

only 1s or 0 s. The shaded submatrices corre-

spond to the contacts that have been observed
in the co-crystal structure of the EGR protein. The amino acids in this figure are colour coded according to size (see also next figure).

The qualitative model has been adapted from Refs 40,43. In the recent years, it has been used to predict and explain interaction data of

this family.(43) The amino acids referred in this figure are colour coded according to size/properties: brown, red, blue and green represent
small, medium, large and aromatic amino acids, respectively.
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contact. For the EGR protein family, the stereochemical merit

points have a value of 10 for all ‘‘valid’’ contacts (i.e., the ones

derived from the crystal structure) on all ‘‘permissible’’ amino

acid groups (see Fig. 4b) and zero otherwise.

For a given protein from the families that are modelled in

this way, a score is assigned to every DNA target. This score is

the sum of the products: (chemical merit point)� (stereo-

chemical merit point), over all base–amino acid contacts

(essentially, the sum of the weights from Fig. 4c). The higher

the score, the higher should be the affinity of this protein to

the DNA.

This model was tested on data from various families of

transcription factors (i.e., HTH, PH, ZnF, C4, etc). For the

evaluation of their method, the authors introduced the

specificity index, which is defined as:

SI � 100 � n � ðm=2Þ

where n and m are the percentages of the DNA sequences

that score higher than and equal to the real binding sequence,

respectively. If the topmost prediction is the real (and unique)

binding sequence, then the specificity index would be 100. The

average specificity indices, calculated for the known binding

sites of the tested protein families, were between 92 (for HTH )

and 99 (for C4).

As innovative as it is, this method has two limitations:

(a) both the ‘‘chemical’’ and the ‘‘stereochemical merit points’’

(i.e., the parameters of the model) have been assigned

semi-arbitrarily (although, to some extent, they could be de-

termined experimentally) and (b) in order to determine the

‘‘stereochemical merit points’’, one needs to know the co-

crystal structure of at least one member of the protein family

and its DNA target.

Frequency-based modelling:exploiting

structural data

Following a different approach, the group of Margalit devel-

oped another quantitative model for protein–DNA interac-

tions. This model is based on the frequencies of the contacts

found in co-crystal structures.(2,44) For each possible base–

amino acid contact, they assigned a score Sij¼ ln[fij /(fi� fj)],

where fij is the observed frequency of contacts between

the amino acid i and the base j, fi was set to be the frequency of

amino acid i in the SWISS-PROT protein database and fj was

0.25 for all bases. These values form a 20� 4 table, which was

Figure 4. Schematic representation of the

Suzuki’s quantitative model for the ZnF

family. The scheme is adapted from Ref.

27. According to the model, the chemical
merit points (a) and the stereochemical rules

for the EGR family (b) are combined to give

the ‘‘recognition code’’ table (c). The chemi-
cal merit points are based solely on the

physicochemical properties of the molecules,

hence they are family/position independent.

The stereochemical merit points are family-
specific and depend on the crystallographic

data. For the EGR protein family they assign

the value of 10 for each of the contact/amino

acid group presented in (b) and zero other-
wise. For example, for the position þ6 of the

helix, the large amino acids (E, K, L, M, Q

and R) are granted 10 stereochemical merit
points for contacting base at position 1 of the

DNA target. All other amino acids have zero

stereochemical merit points for this contact.

The contacts of amino acid position þ6 to all
other base positions have zero stereochemi-

cal points too. The combination of the two

matrices (a) and (b) is represented in matrix

(c). As an example, we provide the combined
score of the base-amino acid contacts for the

large amino acids in the adjacent table. The

model proposed by Suzuki et al.(27) assigns a
score to each protein–DNA pair. This score is the sum of values from (c) for all ‘‘valid’’ contacts. In the original paper the authors

provided the stereochemical rules for other protein families as well (HTH, PH and C4). The amino acids referred in this figure are colour

coded according to size/properties: brown, red, blue and green represent small, medium, large and aromatic amino acids, respectively.

 

a. chemical merit points (general) 
 small medium large aromatic 

A 

C S T (10) 
 
 
 

N (15) 
D (9) 
H (8) 
  

Q (15) 
E (9) 
M (5) 
R K (3) 

Y W (5) 
 
 
 

C 
C S T (10) 
V (8) 
 

D (12) 
N (10) 
H I (8) 

E (12) 
Q (10) 
L M (8) 

F Y W (8) 
 

G C S T (10) 
 

H (12) 
N (10) 

R K (15) 
Q (10) 

Y (5) 
 

T 
A (10) 
C S T (10) 

V I (12) 
N (10) 
H (8) 

L M (12) 
Q (10) 
R K (5) 

F Y W (12) 
  

b. stereochemical rules (ZnF) 
 -1 +2 +3 +6 

1    large 
 

2   medium, 
large 

 

3 large  
 

  

4  small, 
medium 

  

c. combined model (ZnF) 

-1 +2 +3 +6 
 EKLMQR ACDHINSTV DEHIKLMNQRV EKLMQR 

1 
A 
C 
G 
T 

0 0 0 
  
  
  
  

2 
A 
C 
G 
T 

0 0 
  
  
  
  

0 

3 
A 
C 
G 
T  

0 0 0 

4 
A 
C 
G 
T 

0 
  
  
  
  

0 0 

 E K L M Q R 
A 90 30 0 50 150 30 
C 120 0 80 80 100 0 
G 0 150 0 0 100 150 
T 0 50 120 120 100 50 
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used to calculate the total score for a particular protein–DNA

interaction, assuming additivity (Fig. 5).

On predicting DNA-binding experimental data of the EGR

protein family, this method performed satisfactorily.(2) Using

the SELEX data (see below) provided in two studies,(40,45)

their algorithm was able to rank approx. 50% of the experi-

mentally selected triplets in position 6 or higher (i.e. to the top

10% of all the 64 triplets). Moreover, the calculated scores for

various protein–DNA pairs and the experimentally assessed

relative free energies in the same two studies were shown to

be correlated (R¼�0. 79 and �0.49 for the two studies, re-

spectively). The negative sign (i.e., anti-correlation) is ex-

pected, since the convention in Margalit’s model is that a high

(positive) score of a particular protein–DNA pair denotes high

affinity of the two, which corresponds to lower energy values.

Finally, in a more recent report from this group,(46) an ex-

panded set of hydrogen bonds was used to calculate the

scores thus enhancing the performance of their algorithm.

Nevertheless, there are some limitations inherent to this

approach. For example, it assumes that the base–amino acid

contacts are position independent. That is, all amino acid

positions are treated as equivalent, with respect to the base–

amino acid contact preferences. Although, the chemical

properties of the base–amino acid contacts are position-

independent, the same is not true for the stereochemical

properties.(28) This represents a further compression of the

data, since the model assigns to them essentially an average

over all contacts contained in the crystal structures of

the training set. Thus, treating all base–amino acid contacts

as equivalent causes a loss of information (due to averaging

over all contacts).

Another drawback of the method is that it can only model

the ‘‘one-to-one’’ type of interactions (i.e., one amino acid

contacts one base and vice versa); which is not always the

case.(47) In fact, in a recent study of protein–DNA interactions

at the atomic level,(13) Thornton’s group reported as many as

43 examples of complex interactions found in the crystal

structures. This constitutes 12% of all contacts between amino

acids and bases in their data set. Finally, the small size of

the ‘‘training set’’ used in this model (53 crystal structures

with 218 contacts) imposes a limitation on its prediction

capabilities.

Frequency-based modelling:exploiting

selection data

Recently, our group presented another quantitative ap-

proach.(16) Based on the statistical mechanics theory that

was briefly described earlier (Section ‘‘The thermodynamics of

protein–DNA interactions’’), we developed an algorithm for

modelling DNA–protein interactions. This algorithm is named

SAMIE (Statistical Algorithm for Modelling Interaction En-

ergies) and uses data from selection experiments to estimate

the parameters of the model, for any given protein family.

There are, generally, two types of selection experiments it can

utilise: SELEX and phage display.(40,48) The idea for SELEX

experimentation is that a particular (‘‘fixed’’) protein selects a

number of DNA targets from a pool of randomised oligonu-

cleotides. Subsequently, mutants of the protein are used in the

same way. The reverse procedure (‘‘fixed’’ DNA, randomised

protein) is called phage display. The randomised counterparts

(DNA or proteins, respectively) that are recovered from these

experiments form high-affinity interactions with the fixed ones.

However, it is known that sometimes the highest affinity ones

might be missed, due to the stochastic nature of these pro-

cesses. Nevertheless, the higher affinity sites should have a

higher probability of being selected. SAMIE is essentially a

Figure 5. A weight matrix for position-independent

modelling of protein–DNA interactions. This model was

developed by Margalit’s group.(2,44) Based on the
frequencies of the particular base-amino acid contacts

that were observed in the crystal structures (A) scores are

assigned (B). Subsequently, these scores are used for

ranking different protein–DNA pairs. Contacts marked
with the star symbol (*) are the ones that exhibit no

chemical complementarity; thus, according to the authors,

they cannot be found in nature. A lowest score of �3.93

was assigned to these contacts. By contrast, contacts
with zero frequency are those that can be observed in

nature; but no examples were found in the particular set of

crystal structures. This model provides scores for the
contacts in a family independent way. In the case of EGR

family for example, all four weight submatrices (Fig. 3) will

have the same values (B).
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maximum likelihood method. It exploits data from SELEX and/

or phage display experiments (individually or in a combined

set) to estimate the energetic potentials between the different

residues in all base–amino acid contacts of the modelled

protein. This estimation is achieved via a maximisation of the

log-likelihood of the data (based on the statistical mechanics

theory). There are no restrictions as to what the contacting

scheme should be (e.g., ‘‘one-to-one’’, ‘‘one-to-many’’, ‘‘many-

to-many’’, etc).

In our previous study,(16) the SAMIE algorithm was trained

on SELEX data from the EGR protein family and it was then

able to predict DNA-binding sites ofEGR-derived proteins that

were not included in the training set, as well as the SELEX

results of proteins belonging to the MIG family (a yeast family

of Cys2His2 zinc-finger transcription factors that bears no

similarity to EGR outside the finger regions). Furthermore, the

predicted energy values coincide well (R¼ 0.8) with experi-

mental data from Ref. 49.

SAMIE is a fairly general model, as it requires no prior

detailed knowledge of a specific contacting scheme (e.g., a co-

crystal structure). However, should this knowledge be avail-

able, it reduces significantly the number of parameters that

need to be estimated. For example, the model of the EGR

protein family (Fig. 3) requires 4� 20� 16¼ 1,280 para-

meters if all interactions are considered (‘‘all-to-all’’ model), but

this number is reduced 4� 20� 4¼ 320 for the contacts that

have been observed in the co-crystal structure (‘‘one-to-one’’

model). SAMIE’s only assumption is the additivity of the

energetic contributions. Extensions to SAMIE can encompass

non-additivity of individual base–amino interactions by, for

example, consideration of di-nucleotides and di-amino acids.

The idea behind this algorithm is that if a protein binds to a

DNA with high affinity, this should be reflected in the observed

frequencies of their base–amino acid contacts. This is es-

sentially the same idea behind the model presented by the

Margalit’s group.(2,46) However, SAMIE also takes into con-

sideration the variation in preferences due to the topology of

the binding. This consideration is close to the stereochemical

rules, included in the model of Suzuki and colleagues.(27,28)

The exploitation of statistical mechanics theory for the

calculation of the individual contact ‘‘energy’’ values gives

SAMIE a strong theoretical basis. In fact, a model of this type

must be a perfect representation of the interactions to some

level, but limiting amounts of data constrain the number of

parameters that can be estimated, forcing some approxima-

tions. In the case of modelling a single zinc finger of the

Cys2His2 type, the additivity assumption reduces the number

of parameters to 1,280 for the ‘‘all-to-all’’ and 320 for the ‘‘one-

to-one’’ model, respectively. Thus, even under this assump-

tion, a relatively high number of training examples is required

for a complete, efficient training. Given that, it is notable that,

with a training set of 675 training vectors derived from SELEX

experiments the predictions are reasonably good.(16)

Conclusions

The search for a simple, deterministic recognition code had to

be abandoned after the first few protein–DNA structures were

solved. But it is also clear that amino acids and base pairs have

preferred interacting partners which determine the probabil-

ities of their combinations being used in regulatory proteins

and their binding sites. Therefore a probabilistic recognition

code may provide good predictions of high-affinity interac-

tions. An important consideration is whether an additive model

can be a good approximation. Clearly the contributions of

individual amino acids and base pairs are not strictly additive,

but we show that reasonable additivity need only hold for the

high-affinity combinations in order to have a useful model. More

complicated models are possible but require more parameters

to be estimated (i.e., requiring more experimental data).

The EGR family of proteins has a more extensive collection

of known protein–DNA interactions than any other family.

Even so it is not enough to get good estimates of all the

parameters in our model. But current methods such as SELEX

and phage-display allow the rapid collection of more sequence

data. Furthermore, quantitative affinity data can be utilized

directly to enhance the parameter estimation. New methods

for obtaining high throughput quantitative binding data will help

enormously.(34,50)

One of the most interesting, open questions is how similar

the probabilistic codes will be for different protein families. Can

binding energies for other zinc finger families be accurately

predicted using the EGR family model? Can the specificity

of HTH proteins, which also use a-helices for recognition, be

predicted from the same, or very similar models? These ques-

tions can only be addressed by further experiments. But if one

can determine good probabilistic codes for all DNA-binding

protein families, then one could predict the binding sites, and

the set of regulated genes, for all regulatory proteins within any

sequenced genome. That would constitute a major advance in

our ability to understand and model entire regulatory networks.
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