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A recognition code for protein–DNA interactions would allow for the pre-
diction of binding sites based on protein sequence, and the identification
of binding proteins for specific DNA targets. Crystallographic studies of
protein–DNA complexes showed that a simple, deterministic recognition
code does not exist. Here, we present a probabilistic recognition code
(P-code) that assigns energies to all possible base-pair–amino acid inter-
actions for the early growth response factor (EGR) family of zinc-finger
transcription factors. The specific energy values are determined by a
maximum likelihood method using examples from in vitro randomisation
experiments (namely, SELEX and phage display) reported in the
literature. The accuracy of the model is tested in several ways, including
the ability to predict in vivo binding sites of EGR proteins and other non-
EGR zinc-finger proteins, and the correlation between predicted and
measured binding affinities of various EGR proteins to several different
DNA sites. We also show that this model improves significantly upon the
prediction capabilities of previous qualitative and quantitative models.
The probabilistic code we develop uses information about the interacting
positions between the protein and DNA, but we show that such infor-
mation is not necessary, although it reduces the number of parameters to
be determined. We also employ the assumption that the total binding
energy is the sum of the energies of the individual contacts, but we
describe how that assumption can be relaxed at the cost of additional
parameters.
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Introduction

Unravelling the rules that govern the recognition
of the target DNA sequences by transcription
factors is one of the great challenges in compu-
tational biology today. The regulation of the
expression of any gene in a cell is initiated by the
specific binding of one or more transcription
factors in its promoter region. Revealing the mech-
anisms of this process would constitute a key step
towards understanding a cell’s regulation and its
response to various factors. This can lead to tools

for engineering gene regulation, with many poten-
tial therapeutic applications.

Research in this field was initiated by Seeman
et al. over 25 years ago,1 at a time when the term
computational biology sounded quite exotic (if not
self-contradictory) to most people. The analysis of
the structure of the amino and nucleic acid
residues led them to postulate that specificity can
be achieved through a network of hydrogen bonds
that can be formed between amino acid residues
and bases. They concluded that two or more
bonds per base–amino acid pair are required for
efficient discrimination.

That study raised the hopes that a simple, deter-
ministic model (or “recognition code”) might exist
in nature that will adequately explain the protein–
DNA interactions.2 It took 12 more years of
research and a handful of protein–DNA co-crystal
structures to realise that, in the course of evolution,
nature employs a variety of strategies to achieve
protein–DNA recognition. On the basis of the
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differences between the 3D structures of various
transcription factors, Matthews claimed in 1988
that there is “no code for (protein–DNA)
recognition”,3 although he made it clear that he
was referring to a simple, deterministic code. In
the years that followed this publication, the
existence of a recognition code became a highly
debatable issue. We know now that there are clear
preferences for base–amino acid contacts.4 – 9 Thus,
although the concept of a universal, deterministic
recognition code has largely been abandoned, a
two-way “probabilistic code” (P-code) constitutes
a promising approach to this problem.

There have been a number of attempts to
mathematically model protein–DNA interactions,
which have met with variable success.7,10 – 14 All of
these methods are based on empirical observations
or semi-arbitrarily determined “scores” to evaluate
the DNA specificity of proteins. The currently
available models can be classified into two main
categories. We call a model qualitative if it uses
binary values (e.g. 1 or 0) to describe the inter-
actions between bases and amino acid residues.
The qualitative models usually consist of a look-
up table that associates amino acid residues in
certain positions in the protein (“contacting”
amino acid positions) with particular bases in cer-
tain positions in the DNA target.15,16 By contrast, a
quantitative model provides a measure for the
binding affinity for any given protein–DNA pair.
The quantitative models usually consist of a
weight matrix that assigns a score to the base–
amino acid contacts. The score can be position-
dependent (as used by Suzuki et al.10) or position-
independent (as used by Mandel-Gutfreund &
Margalit7,13 and Kono & Sarai12). A qualitative
model can be viewed as a degenerate quantitative
model, where each of the weights has a value set
to 1 (“permissible”) or 0 (“non-permissible”). A
quantitative model can be transformed into
qualitative by setting a score threshold that will
separate the permissible from the non-permissible
contacts.

One feature common to all existing models is
that they consider the individual contacts to be
independent from each other and hence have an
additive contribution to the total binding energy/
affinity score. It is known that the additivity
assumption is not altogether correct. In fact, the
violation of this assumption in certain situations
constitutes one of the main arguments against a
recognition code. But, for prediction purposes, the
additivity assumption needs to hold only for high-
affinity protein–DNA pairs.17 In a few cases
where it has been examined closely, additivity
between positions in the binding sites does not
hold exactly,18,19 but the data in these studies show
that it provides a good approximation to the true
binding energies.20

Here, we present a P-code for modelling the
protein–DNA interactions, which can be divided
into two parts. First, we present a theoretical
framework of how the protein–DNA specificity

can be described probabilistically. On the basis of
this framework, which derives from the statistical
mechanics theory, we develop an algorithm that
can estimate the base–amino acid energetic poten-
tials from in vitro randomisation experimental
data (SELEX and/or phage display, see below).
We implemented this algorithm into a program
called Statistical Algorithm for Modelling Inter-
action Energies (SAMIE). The description of the
algorithm can be found in Materials and Methods.
We use the early growth response (EGR) protein
family as a test case for our algorithm. SAMIE is
trained on published data from in vitro selection
experiments and specifies the position-specific
energetic potentials of the base–amino acid con-
tacts. The program determines the values of the
parameters that maximise the probability of
obtaining the observed data. For the training, we
use knowledge of structural details of the pro-
tein–DNA interface. However, we describe how a
model could be developed without using such
knowledge at the expense of additional parameters
that needed to be determined. Also, for the train-
ing, we invoke the assumption of additivity, but
we describe how more complex models without
that assumption can be used, again at the expense
of additional parameters, which would require
more data to determine.

Secondly, we evaluate the accuracy of the
derived model in several ways. In order to choose
the model that best describes the protein–DNA
interactions of the EGR family, we do several train-
ings using different partitions of the dataset
(SELEX data only, phage display data only or
both) and employing different contacting schemes.
The resulting models are compared in terms of pre-
diction efficiency on their own training sets in
order to select the one that will be used for sub-
sequent analysis/evaluation of the algorithm. The
evaluation is performed in various ways, including
a comparison of predicted relative binding con-
stants to those measured for several proteins. We
compare it to previous models, both qualitative
and quantitative, and demonstrate its improved
accuracy.

The EGR protein family

There are a number of protein families that have
provided the basis for previous studies of protein–
DNA interactions. Among them, the EGR factor
family is probably the most extensively studied
and therefore we use it here as a test case for our
algorithm, SAMIE.

Members of this family were initially identified
in mammals;21 – 23 recently they were discovered in
a variety of other species, including Xenopus laevis24

and zebrafish.25 The EGR proteins contain three
zinc-finger regions, a domain common to many
eukaryotic transcription factors. They belong to
the Cys2His2 subfamily of zinc-fingers, which
derives its name from the residues that are used
for the coordination of the zinc ion. Cys2His2 is a
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eukaryotic motif very common to many
transcription factors, 2719 members in Pfam v7.2.26

The structure of the three zinc-fingers of the
mouse protein Zif268 (or EGR1) bound to its con-
sensus DNA sequence was initially solved
crystallographically at 2.1 Å resolution27 and sub-
sequently refined to 1.6 Å resolution.28 The crystal
structure showed that each of the three fingers
contacts its DNA target in a modular, antiparallel
fashion. Initially, it was believed that each finger
recognises three bases, but the refinement of the
structure showed that a fourth base is contacted as
well. In each finger there are four amino acid
positions involved in contacts with four DNA pos-
itions. For some DNA positions, only one base is
contacted, whereas in others both the forward and
the complementary base are contacted by amino
acid residues in adjacent fingers (overlapping base
positions). In particular, the amino acid residues at
positions 21, þ3 and þ6 in each finger (with
respect to the beginning of the a-helix) contact the
bases at positions 30, middle and 50, respectively;27

the amino acid residue at position þ2 of the helix
contacts the complementary strand on the fourth
position (overlapping base).28 This contacting
scheme is illustrated in Figure 1. We note that
some of the EGR variants have been shown to
deviate from this pattern of contacts.29

Data from selection experiments

Protein–DNA interaction data can generally be
divided into three categories. One refers to pairs
of sequences (protein and DNA) that are
known to bind to each other with some affinity.
Typically, these examples are the result of
experiments that aimed to measure directly the
binding affinity of the protein (or its mutants) to
particular DNA targets. This category includes the
wild-type protein sequences bound to their in vivo
targets.

The remaining two categories refer to data
derived from in vitro selection experiments, namely
SELEX and phage display. In a SELEX experiment,
a protein of known sequence is used to select
DNA targets from a pool of randomised
oligonucleotides.30 This procedure usually yields

more than one DNA target. Although one would
assume that all selected targets exhibit high affinity
towards the protein, the highest affinity target
might not be selected at all (for purely stochastic
reasons).

In a phage display experiment, the reverse
randomisation/selection procedure applies.31 A
recombinant DNA library is constructed that
consists of variants of the cDNA sequence of a
known DNA-binding protein. The nucleotides that
code for certain amino acid positions are
randomised (usually, these are the positions that
are known to contact the DNA or they are
assumed to do so). Upon expression, the poly-
peptides are displayed on the outer coat of the
phages. Thus, proteins can be selected that bind
with high affinity to a certain (fixed) DNA target.
As in the case of SELEX, multiple proteins are
usually selected for any given DNA target and the
protein that exhibits the highest affinity towards
the particular DNA sequence might not be among
those selected.

Theory

The P-code model for protein–DNA recognition

In this section, we present the theoretical frame-
work of the protein–DNA recognition upon
which our method is based.

Thermodynamic aspects of the protein–
DNA recognition

The recognition of specific DNA sequences by
the corresponding transcription factors can be a
complicated, multi-step process.32 Nonetheless, if
we assume that a protein comes into contact with
various DNA sequences via diffusion, then in
equilibrium we would expect that the time that it
interacts with each of them will be inversely
proportional to their dissociation constants KD.

Consider a DNA-binding protein, A, that has Ntot

possible targets. For example, if the DNA target for
this protein is L bases long, then there will be
Ntot ¼ 4L possible targets. Each of these targets will
have a relative frequency Pn(kN ) among all possible

Figure 1. Representation of the
binding of the EGR protein to its
DNA target. According to crystallo-
graphic studies, each of the three
zinc-finger domains of the EGR
protein contacts four bases in an
antiparallel fashion. There is one
base overlap in the target sequence
between any two adjacent fingers.
The numbering of the amino acid
residues is with respect to the
beginning of the a-helix. Amino

acid residues 21, þ3 and þ6 contact bases at positions 3, 2 and 1, respectively, whereas amino acid residue þ2
contacts the complementary base at position 4 (overlapping base).
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binding sites, for example in the genome. Assum-
ing equilibrium, the conditional probability that
this protein will be bound to a particular DNA
target, kN, is given by the following equation:

PðkNlAÞ ¼ PnðkNÞe2HðkN;AÞ=
X

k0

Pnðk0NÞe2Hðk0N;AÞ

 !

ð1Þ

where H(kN,A) is the binding energy of the inter-
action and the sum in the denominator is the
partition function over all possible DNA target
sequences, k0N (k0 ¼ 1,…,Ntot). This formula derives
from the Boltzmann distribution of the statistical
mechanics theory33 and it relates the energy values
with the binding probabilities.

As evident from equation (1), the DNA
specificity of a given protein is determined by the
relative energy, and the absolute energy values are
not important. (This assumes that the protein is
always bound to DNA, which is essentially true in
vivo unless it is prohibited from binding by some
mechanism, such as binding to an inhibitory
protein.) One can subtract any constant from all of
the energy values and the probability of binding
will be unchanged. This formula follows the con-
vention that lower energy values correspond to
stronger binding (or longer dissociation times).
Sometimes, the value of zero is assigned to the
lowest-energy state and all other states have posi-
tive values. In this study, we allow the energy
values to take both positive and negative values;
more negative values correspond to stronger bind-
ing (higher affinity). We arbitrarily assign an
energy of zero to the average affinity, so that those
sequences that bind better than average have
negative energy and those that bind worse are
positive.

Methods for modelling the protein–
DNA interactions

In theory, one could determine the binding
energy for a protein of interest to all possible target
sequences. In this case, equation (1) would be an
accurate description of the distribution of the
protein on the various sequences at equilibrium.
Note, however, that this would not constitute a
model for the protein–DNA interaction, but
simply a look-up table that stores the measured
values. And of course, for a complete represen-
tation of a given protein family, one should deter-
mine such a table for all possible protein
sequences (by which we mean all possible variants
at the residues involved in the sequence-specific
DNA binding). For example, a typical DNA-
binding protein has binding sites of about ten
base-pairs. There are over 106 possible sequences
for a 10 bp site. If the protein uses ten amino acid
residues to recognise its DNA target, then the
number of all possible proteins (with respect to
these positions) is 2010, which is greater than 1013.

A complete look-up table for this protein family
would contain the affinity values of each of these
proteins to each of these DNA targets (.1019

values). Having a mathematical model for the
interaction, some kind of code, allows one to
predict the interaction energy for all possible com-
binations based on measurements for only a
fraction of them.

In the simplest model, only certain combinations
of amino acid residues and base-pairs have favour-
able affinity and those combinations are used
exclusively for the protein–DNA contacts. This
was the type of code sought by Seeman et al.,1 but
only a few crystal structures of protein–DNA com-
plexes were sufficient to determine that such a
simple code does not exist.3 Recent qualitative
models for the EGR family are similar, but they
allow for multiple amino acid residues to interact
favourably with each base-pair and multiple base-
pairs to interact favourably with each amino
acid.14 – 16,31,34 Thus they are simple, degenerate
codes in which the amino acid and base-pair com-
binations are categorised as either permissible or
not. Such codes have been useful in modelling cer-
tain protein–DNA interactions, and even in
designing proteins with high affinity to specific
sequences. However, by design they cannot predict
the affinities of different sequence combinations
and, as we show below, about 40% of the inter-
actions obtained in SELEX and phage display
experiments are not accounted for by these
models.

The next more complicated models are quanti-
tative, with a score associated with each base-
pair–amino acid combination, and additive. That
is, the base-pair–amino acid contacts are con-
sidered to be energetically independent and there-
fore, the total energy of the interaction is merely
the sum of energies over all contacts. The number
of parameters in the additive models is pro-
portional to the number of contacts, not the
number of sequence combinations. Each contact
has (at most) 80 parameters, for all possible combi-
nations of base-pairs with amino acid residues.
Using the example above, the number of par-
ameters one needs to estimate is 800 for the 10 bp
DNA target (assuming that each of the ten amino
acid residues contacts one base only). This is a sig-
nificantly smaller number than the list of .1019

possible combinations. However, the effort
required to determine 800 energy values experi-
mentally is still large.

Representation of the model

Figure 2 illustrates the model for protein–DNA
interaction using a single zinc-finger as an
example. In Figure 2(a), the four positions of the
binding site are listed along the left side of the
Table, with each of the possible bases for each
position shown. The “positions” in the protein are
listed across the top of the Table. These are only
the protein residues that are directly involved in
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contacting the bases in the binding sites, as deter-
mined from crystallography, and are positions 21,
þ2, þ3 and þ6 relative the a-helix of the
zinc-finger. Each position can be occupied by any
of the 20 amino acid residues, but only a few of
them are listed to save space. The elements of the
Table are energies of interactions between specific
amino acid residues and base-pairs, and it allows
the calculation of interaction energy for any protein
sequence with any DNA sequence, using the addi-
tivity approximation. For a specific protein binding
to a specific DNA, the interaction energy is simply
the sum of the contacts for those particular
sequences. For example, if the protein sequence is
TVWY (at positions 21, þ2, þ3 and þ6 in the
zinc-finger, respectively), then only the columns
corresponding to those amino acid residues, indi-
cated in the Figure, are relevant to the energy
calculation. Likewise, if the binding site contains
the sequence ACAG, then only the rows corre-
sponding to that sequence are relevant to the bind-
ing energy. So the total binding energy might be
the sum of the 16 values where those rows and
columns intersect. However, for this protein we
know that the amino acid residue at position 21
interacts only with the 30 DNA position, the
residue at position þ3 interacts with the middle
position, etc., so that only the intersections
shown with filled circles contribute to the
binding energy. If we did not know which
amino acid residues interacted with which DNA
positions, we would have to include all of the

possible interactions in calculating the energy (all
of the circles), but presumably with enough train-
ing data the interacting positions would become
clear as the only significant contributions to
specificity.

The interaction energies are denoted by Tij
ab,

where i and j are the positions in the amino acid
and nucleotide sequences, respectively; a and b
are the specific amino acid residues and bases that
occur at those positions; and C is the “connectivity
matrix” that indicates which positions in the pro-
tein contact which positions in the DNA (Figure
2(b)). Matrix element Cij is “1” for those contacting
amino acid and base positions and “0” elsewhere.
As such, only the positions in contact contribute to
the final energy. Together the T and C matrices
allow the calculation of binding energy for any
zinc-finger protein with any four-long DNA
sequence. To get the specific interaction between a
particular protein and a particular DNA, one just
sums the elements of T that correspond to those
interactions, as shown in the Figure. In the
equation (Figure 2(c)), N is a unary vector that con-
tains 1 for the base that occurs at each position, and
0 elsewhere. Likewise, A is a unary vector for the
amino acid sequence. It contains a 1 for the amino
acid at each position and 0 elsewhere. Multiplying
them with the T matrix serves to select out only
those elements that correspond to the interacting
positions, as shown in the Figure, the sum of
which constitute the predicted binding energy of
that interacting pair. Additional details of the

Figure 2. A representation of the
energy calculation. SAMIE exploits
in vitro randomisation experiments
and calculates the weight matrix T
that maximises the likelihood of
the training set according to
equation (1) or (3). (a) A graphical
representation of such a weight
matrix for one zinc-finger of the
EGR protein family. Each finger of
the EGR proteins uses four amino
acid residue positions (numbered
21, þ2, þ3 and þ6 from the begin-
ning of the a-helix) to recognise a
4 bp DNA target. Each small sub-
matrix of matrix T consists of 80
values, which correspond to single
base–amino acid energetic poten-
tials (20 amino acid residues £ 4
bases). For calculating the predicted
energy of the interaction of a given
protein sequence of this family (e.g.
TVWY) to a given DNA sequence

(e.g. ACAG), we encode the two sequences in two unary vectors, A and N, as we describe in Materials and Methods.
When multiplied with matrix T, the two unary vectors, A and N, select the appropriate columns and rows, respectively,
that define the base–amino acid energetic potentials of the interaction. Under the additivity rule, the total energy of
these individual predicted energetic potentials is summed (circles). (b) Additional structural details of the interaction
can be imposed by terms of the connectivity matrix, C. In this matrix, the positions that are known to interact have
the value of 1 (shaded boxes) and all the others are set to 0. Multiplication of this matrix with the rest depicts only
the relevant energetic potentials for the final sum (filled circles). The mathematical representation of this procedure
(see equation (2)) is shown in (c).
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encoding are provided in Materials and Methods.
Note that for a specific protein it is possible to
determine the “weight matrix”35 that predicts the
binding energy to all possible sites for that protein
by just combining the rows that correspond to that
protein sequence, as shown in Figure 9 in Materials
and Methods. That allows one to easily calculate
the probability of the protein binding to any
particular sequence. The same thing was done to
generate a weight matrix that described the energy
of any particular DNA sequence to all possible
protein sequences (not shown), which is used in
the calculation of probabilities for the phage
display data.

Using data from SELEX randomisation
experiments

Instead of measuring the relative energy of the
interaction of a systematic set of protein and DNA
combinations designed to obtain all of the
desired parameters, one could perform SELEX ran-
domisation experiments with many (but not all) of
the proteins. Each of the proteins is allowed to
select its preferred target(s) from a pool of
randomised oligonucleotides. Of course, due to
the stochastic nature of the selection process, the
target with the lowest binding energy (i.e. highest
affinity) might not be among those that are finally
selected. Nevertheless, we would expect that the
targets that will be selected would bind to the
protein with high affinity. Moreover, we can
assume that the stronger that a base–amino acid
contact is, the higher the probability that it will be
selected.

The probability that a particular nucleotide
target kN would be selected by the protein A will
be given by the same formula (equation (1)). This
time, Pn(kN ) is the relative frequency of the selected
target kN in the oligonucleotide pool; the denomi-
nator is, again, the partition function, now calcu-
lated over all DNA target sequences present in the
oligonucleotide pool. H(kN, A ) is the total binding
energy potential of the DNA target to the protein
A, which assuming additivity over all contacts,
can be calculated from the formula:

HðkN;AÞ ¼
X
ijab

CijA
a
i Tab

ij Nb

j ð2Þ

where the variables are as described above (see
also Figure 2).

Using data from phage display
randomisation experiments

In the previous section, we focused on the
problem of “DNA recognition” by a particular
protein. Similar arguments and formulae can be
stated and written for the reverse problem: i.e.
“protein recognition” by a given DNA target.
Phage display randomisation experiments can be
performed, in which a fixed DNA target will be

used to select some protein sequences that bind to
it with high affinity, from a pool of randomised
proteins. In this case, the probability that a given
(“fixed”) DNA sequence will select a particular
protein is given by:

PðkAlNÞ ¼ PaðkAÞe2HðN;kAÞ=
X

k0

Paðk0AÞe2HðN;k0AÞ

 !

ð3Þ

where now the sum in the partition function is cal-
culated over all possible protein variants. The
randomised amino acid positions are usually
limited to those assumed to make direct contacts
with the bases.

SAMIE: maximising the probability of the observed
interaction data

Using the statistical mechanics theory just
described, the problem of modelling the protein–
DNA interactions for a given protein family con-
sists of estimating a number of parameters that cor-
respond to position-specific energetic potentials of
single contacts. By assuming that the interactions
are additive, the problem is simplified significantly,
because each contact will require 20 £ 4 ¼ 80 par-
ameters to be modelled. For example, the model-
ling of a single zinc-finger of the EGR family
bound to a tetranucleotide target would consist of
specifying the values of a weight matrix like that
presented in Figure 3 (framed submatrix). If we
did not know the exact pattern of contacts and we
had to allow for any combination between the
four bases and the four amino acid residues, then
we would have to use the “all-to-all” model and
the number of parameters would be
16 £ 4 £ 20 ¼ 1280 (i.e. all the 16 submatrices
within the framed area in Figure 3). Restricting the
model solely to the contacts known from the crys-
tal structure28 reduces this number to 320 (i.e.
“one-to-one” model, shown as shaded areas in the
framed submatrix in Figure 3). The “many-to-one”
model includes two additional contacts from
amino acid residues in the adjacent fingers to the
overlapping bases (i.e. the external shaded areas
in Figure 3), but the number of parameters remains
320. This is because the two additional contacts are
identical with those included in the “one-to-one”
model (dotted arrows, Figure 3), so they can be
linked during training.

The algorithm we developed, SAMIE, estimates
these parameters from SELEX and/or phage dis-
play data. Essentially, SAMIE calculates the matrix
T that maximises the probability (or log-
probability) of observing the data. To this extent, it
can be viewed as a maximum likelihood estimator
of the interaction energy parameters. A detailed
description of the algorithm is provided in
Materials and Methods.
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Results

Training datasets and models calculated
by SAMIE

In a preliminary report, we used solely SELEX
data from the EGR protein family to train
SAMIE.36 The training vectors in that set were con-
structed according to the “one-to-one” model of
interactions, consisting of the four “contacting”
amino acid residues and their corresponding
(four) target bases (see Figure 3).27,28

In the present study, we use an expanded dataset
of the same protein family. All data are collected
from the literature and stored in a database.36

They are organised into six datasets that differ in
the type of data they contain (SELEX, phage dis-
play or both) as well as the model of interactions
they are built upon one-to-one or many-to-one
(see Figure 3). Both models consider only the con-
tacts that have been observed in the co-crystal
structure (Figure 3, shaded submatrices). The
many-to-one model consists of a superset of the
one-to-one. For each finger modelled (HR), it con-
tains two additional contacts: the amino acid
residue at position þ2 of the following finger
(HRþ1) that contacts base 1 of the DNA target and
amino acid residue þ6 of the preceding finger
(HR21) that contacts base 4 (overlapping base). The
two additional contacts are linked to their “identi-
cal” ones (see Figure 3, dotted lines) during
training.

The purpose of the training on multiple sets is to
determine how different are the models derived
from SELEX data only or phage display data only
when compared to the models derived from the
combined datasets. Also, we would like to see
whether there is any difference in the models

resulting from training on the one-to-one or many-
to-many modes of interactions.

The three datasets that are made according to the
one-to-one model are named SELEX_4, PHAGE_4,
and COMBINED_4, whereas those that are made
according to the many-to-one model are named
SELEX_6, PHAGE_6 and COMBINED_6. The
detailed description of the construction of the data-
sets is presented in Materials and Methods. SAMIE
was trained on each of these six datasets, resulting
in six different weight matrices (or models) with
the base–amino acid energetic potentials for the
EGR family. We call these matrices SAMIE_S4,
SAMIE_P4, SAMIE_C4, SAMIE_S6, SAMIE_P6,
and SAMIE_C6. The letters S, P and C are indica-
tive of the type of data in the training set (i.e.
SELEX, phage display and composite datasets,
respectively) and the numbers of the model of
interaction that was used; 4 for the one-to-one; 6
for the many-to-one.

In the following, we use the evaluation measures
success rate and specificity index that we define in
Materials and Methods and some others where
appropriate, in order to evaluate the ability of
SAMIE to describe protein–DNA interactions in
five ways. (a) First, by predicting the data of its
own training set, we show that there is no internal
inconsistency in the model. (b) Second, by predict-
ing known in vivo EGR binding sites, SAMIE is
tested on its potentials as a “genomic scanner” for
the EGR proteins. (c) Third, predicting known in
vivo binding sites of other transcription factors
indicates the extent to which SAMIE constitutes a
good representation for other Cys2His2 zinc-finger
proteins. (d) Fourth, the correlation between
predicted energy values with measured affinities
tests how well the frequency-derived weights
of SAMIE correspond to real energy potentials.
It shows to what extent potential “docking

Figure 3. Models of interaction.
This weight matrix represents the
parameters that SAMIE needs to
estimate for the modelling of a
single finger target site (EGR pro-
tein family). Each small sub-matrix
consists of 4 £ 20 energy values
that relate the amino acid residues
of a particular contacting position
in the protein with the bases in a
DNA target position. The framed
area constitutes the full model of
the four amino acid residues of a
single finger contacting four bases
in the DNA target. The shaded sub-
matrices correspond to the contacts
observed in the co-crystal structure
of the EGR protein.27,28 The four

shaded submatrices in the framed area (320 parameters in total) constitute the one-to-one model of interactions that
we refer to in the text. The many-to-one model of interactions includes the two external shaded submatrices. These
submatrices (i.e. contacts from the adjacent fingers) contain 80 parameters each (20 amino acid residues £ 4 bases).
However, due to the fact that the additional contacts are (stereochemically) identical with others included in the
main matrix (connected by broken-line arrows in the Figure), the number of parameters to be estimated remains
4 £ 4 £ 20 ¼ 320 in this model too.
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rearrangements” might affect SAMIE’s predictions.
(e) Finally, we compare SAMIE with the other
existing qualitative and quantitative models to
indicate the strengths and weaknesses of each one.

Evaluation on the training sets

There are three reasons that we are interested in
evaluating SAMIE on its training sets (self-test).
First, we would like to check whether the
algorithm is self-consistent. An algorithm that is
self-consistent should be able to predict quite accu-
rately, at least its own training set. The second
reason is that we would like to measure how
much the various training sets and modes of inter-
actions are affecting the predictive power of
SAMIE. Finally, we would like to select the model
that performs best for further analysis (i.e. predic-
tion of in vivo binding sites, prediction of binding
energies, etc.).

We use the parameters of each of these six
weight matrices to evaluate SAMIE on the corre-
sponding SELEX and phage display training
vectors. For each of the fixed sequences of the
vectors in the evaluation set, all possible random-
ised sequences were ranked according to their
probabilities of selection, as they are calculated by
SAMIE (equations (1) and (3); see also Figure 2),
using the corresponding weight matrix. For the
SELEX-derived vectors, an equal reference prob-
ability of 0.25 was assigned for all bases; whereas
for the phage display vectors, the particular experi-
ment-specific randomisation scheme was adopted.
This is important, because some phage display
randomisation schemes, such as VNN and VNS†,
exclude certain amino acid residues from the selec-
tion procedure. Others, like NNK and NNS, simply
alter the amino acid frequencies.

The results of the self-tests are presented in Table
1 and they show that all SAMIE’s models are self-
consistent (SR0.1 values of 0.854–0.929). In general,
training according to the one-to-one model of inter-
actions seems to give slightly better predictions on
phage display data, whereas the many-to-one
model of interactions predicts the SELEX data
better. The training on the combined data sets
resulted in predictions of the SELEX and the
phage display datasets almost as accurate as the
training on these sets individually. On average,
the model of interactions we used for the training
on combined datasets did not affect much the pre-
diction capabilities of SAMIE (SR0.1 values of 0.907
and 0.902 for the SAMIE_C4 and SAMIE_C6,
respectively).

The results show that there is no internal consist-
ency in the method. Since the two SAMIE models
that are trained on composite sets (SAMIE_C4 and
SAMIE_C6) perform about the same overall, we

chose to use SAMIE_C6 for the subsequent
analysis, because we feel it is the more complete.
The weight matrices of the four principal contacts
of this model are presented in Table 2.

Evaluation on known in vivo binding sites

The database used to train SAMIE contains
results from in vitro selection experiments involv-
ing the proteins of the EGR family, and it contains
EGR protein–DNA binding pairs known to occur
naturally in vivo. The latter were not used in train-
ing SAMIE. It is therefore of interest to see how
well SAMIE evaluates the known, in vivo binding
sites for the EGR family. Furthermore, we report
results on how well SAMIE ranks known, in vivo
binding sites for three yeast proteins that are not
homologues of EGR (i.e. MIG1, MIG2 and ADR1),
but that contain two Cys2His2 domains each. Simi-
lar analysis is performed with the Drosophila Cys2-

His2 protein Tramtrack.
For these tests, we use SAMIE_C6, which is

trained on the combined dataset according to the
many-to-one model of interactions. All rankings
are based on the probabilities as they are calculated
by SAMIE (equation (1)). For the prediction of the
natural binding sites of the yeast proteins, we
used the GC content of the organism to define the
prior probabilities, Pn, in equation (1). This reflects
a “protein’s view” of the genome, where the
different binding sites “compete” for that protein.
Similar results were obtained when an equal prob-
ability of 0.25 was used for all bases.

Evaluation on known in vivo EGR-binding sites

Apart from the SELEX and phage display
examples, our database contains 24 in vivo DNA

Table 1. Evaluation of SAMIE trained on various data-
sets and two models of interactions: evaluation of
SAMIE trained according to the (A) one-to-one model of
interactions, and (B) many-to-one model of interactions

SAMIE model

Evaluation
set

No. of
examples SAMIE_S4 SAMIE_P4 SAMIE_C4

A.
SELEX 4 96 83 (0.865) n/a 82 (0.854)
PHAGE 4 311 n/a 288 (0.926) 287 (0.923)
Total 407 n/a n/a 369 (0.907)

B.
SAMIE_S6 SAMIE_P6 SAMIE_C6

SELEX 6 99 92 (0.929) n/a 89 (0.899)
PHAGE 6 279 n/a 256 (0.918) 252 (0.903)
Total 378 n/a n/a 341 (0.902)

The names of the evaluation sets are indicative of the type of
data they contain (i.e. SELEX data only, phage display data
only or both sets combined). The number of examples contained
in each evaluation set is shown in the second column. The num-
ber of the examples that the various SAMIE models ranked in
the top 10% of all the predictions is reported, together with the
SR0.1 (number in parentheses).

† Nucleotide representation according to IUPAC: V: G
or C or A; K: G or T; S, G or C; N: A or C, or G or T; the
triplet refers to the codon.
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Table 2. The energy matrix as it was calculated by SAMIE when trained on the COMBINED_6 dataset

Finger position ¼ 21; base position ¼ 3 Finger position ¼ þ2; base position ¼ 4 Finger position ¼ þ3; base position ¼ 2 Finger position ¼ þ6; base position ¼ 1
A C G T A C G T A C G T A C G T

A 1.29 0.92 1.72 6.42 0.25 20.87 1.32 0.58 0.54 2.12 2.27 21.14 20.33 1.38 20.13 0.72
C 5.21 4.71 6.29 4.51 3.86 20.93 6.92 4.94 4.16 1.89 6.27 20.08 4.68 5.07 5.11 5.39
D 1.93 22.35 0.33 20.68 2.27 0.42 20.44 20.29 5.82 21.32 7.20 6.32 1.75 0.64 1.17 20.21
E 0.34 21.06 20.05 20.98 6.34 21.72 1.88 0.29 1.30 0.43 1.98 1.16 0.09 1.68 1.26 20.08
F 5.21 4.71 1.33 4.51 3.86 5.55 1.36 4.94 4.16 6.92 6.27 5.13 4.68 0.42 5.11 5.39
G 2.45 0.44 1.07 0.47 0.23 21.58 0.39 20.55 0.27 1.43 2.27 20.51 2.62 2.62 1.61 1.54
H 1.41 20.10 1.42 20.85 20.38 20.99 0.20 21.78 0.28 2.64 21.31 6.72 1.73 6.10 20.08 0.33
I 1.55 1.58 1.16 1.77 1.05 5.55 8.45 5.90 5.68 2.58 7.23 1.23 1.81 1.77 5.78 6.46
K 0.33 20.37 21.04 21.14 6.59 20.94 2.70 6.47 5.54 7.47 0.77 1.04 0.87 6.99 21.01 21.38
L 1.18 0.19 7.89 20.46 7.05 6.63 3.50 1.14 6.93 1.54 8.16 0.89 1.09 2.44 0.79 7.94
M 6.52 4.99 6.55 21.55 6.33 5.55 2.41 0.28 0.26 7.32 2.06 20.29 6.91 5.71 5.48 6.27
N 0.04 0.73 0.06 21.33 1.14 21.72 0.75 1.21 23.73 0.86 20.005 20.80 20.81 0.48 21.00 1.75
P 7.33 5.89 7.36 0.75 7.01 0.17 2.27 6.58 6.20 8.16 2.85 1.73 7.70 2.18 0.21 0.74
Q 22.50 6.32 0.72 20.52 0.20 21.32 1.78 0.30 20.26 1.34 0.77 0.35 20.92 6.10 20.08 0.33
R 1.01 3.26 21.36 0.46 1.66 21.05 2.11 7.37 6.59 3.54 2.56 2.14 0.38 0.55 23.33 1.29
S 1.06 0.73 0.61 20.57 2.29 21.45 0.28 20.91 6.06 1.15 1.69 21.65 20.21 0.03 20.40 20.39
T 0.27 1.72 0.59 21.33 20.18 21.52 1.29 1.23 7.50 20.04 3.26 0.26 21.19 0.20 20.63 20.46
V 7.59 6.70 1.57 0.92 7.01 0.17 1.76 0.57 8.01 0.79 8.52 0.80 1.13 1.98 0.46 0.78
W 2.21 4.71 6.29 4.51 3.86 20.52 0.67 20.71 4.16 6.92 6.27 20.08 4.68 5.07 5.11 20.27
Y 5.21 4.71 20.05 4.51 4.95 21.25 1.43 5.31 4.16 6.92 1.27 5.13 21.37 5.85 5.23 5.61

The COMBINED_6 dataset consists of both SELEX and phage display data, according to the many-to-one model of interactions. The energy values presented here have been normalised so that
the average binding constant for each contact is 1.0. This normalisation does not affect the calculation of probabilities, as described in the text. The normalised matrix shows that the energetic
potential of a base–amino acid contact varies, depending on its position in the DNA target and the protein.



targets (10-mers) of the EGR proteins. These data
are not included in the training sets, partly because
the choice of prior probabilities for both the bases
and the amino acid residues would be arbitrary.
Furthermore, SAMIE was trained on the 4 bp
(sub)targets and not on the complete sequences.
Nevertheless, parts of these sequences had been
recovered in SELEX or phage display experiments.
The 24 naturally occurring binding sites consist of
31 different tetranucleotides, 14 of which are
included in the COMBINED_6 training set.

SAMIE is able to rank 21 out of the twenty-four
10 bp natural sites at positions 1–2000 (i.e. in the
top 0.2% of all possible 10 bp targets). The remain-
ing three are sites that have been found in the
promoter regions of the human basic fibroblast
growth factor37 and the human interleukin 2
gene,38 and they rank at positions 11,766, 51,436
and 62,580 (or in the top 6% of all possible targets).
It is of some interest that at least one of these three
sites is not unambiguously a target for the EGR
genes. In the case of the site found in the promoter
of the human basic fibroblast growth factor,37 there
were two additional putative target sites in the
proximity of the genomic region, and these
additional sites were ranked by SAMIE_C6 at
positions 258 and 661, respectively.

Evaluation on known in vivo MIG-binding sites

In yeast, there is no EGR homologue. However,
yeast has a number of proteins that contain the
Cys2His2 zinc-finger domain. Transcription factors
MIG1, MIG2 and ADR1 are three known examples.
All three of them contain two fingers that are quite
similar to those of the EGR. However, there is no
global similarity between the yeast proteins and
the EGR, or between the MIG proteins and ADR1.
On the contrary, there are some major differences:
(1) the three yeast proteins contain one zinc-finger
domain less than the EGR; (2) the domains are
located in the amino terminus of the yeast proteins,
whereas EGR has them at the carboxy terminus;
(3) the ADR1 is twice the size of the others and it
is known to require an additional 20 amino
acid residues to recognise its DNA target
efficiently.39

The MIG transcription factors are known to
regulate a number of yeast genes. One of their pri-
mary targets is SUC2-A and it has been shown
that the MIG proteins bind to its promoter region
with high affinity. The target site for the SUC2-A
promoter is believed to be 50-GCGGGGA-30.40

MIG1 and MIG2 are identical with respect to the
amino acid residues at the “contacting” positions
of the two fingers. Assuming that the two MIG
proteins, similar to EGR, bind the DNA in an anti-
parallel fashion, we used SAMIE_C6 to predict
their composite 7 bp long target sequence. The
weighted LOGO of their possible target sites was
calculated by program ENOLOGOS (P.V.B. et al.,
unpublished results) and is presented in Figure 4.
ENOLOGOS uses the algorithm presented by

Schneider et al.,41 but each sequence is weighted
according to the predicted probability of
binding.

Compared to the binding site found in the pro-
moter of the SUC2-A gene, SAMIE predicts cor-
rectly all but the last nucleotide position (where it
predicts C or T instead of A). The 6 bp (sub)se-
quence 50-GCGGGG-30 of the natural site was
SAMIE’s topmost prediction (out of a total of 4096
possible sites). Lutfiyya et al. reported the results
of SELEX experiments that they performed using
these proteins.40 These results agree with SAMIE
that A is anti-selected at the last position and they
show that MIG proteins prefer G in this position,
with T or C being their second preference. This
observation raises the point that other factors
(besides the affinity) might play an important role
in the in vivo selection of the binding sites. The
transcription factors might recognise genomic
sequences that do not exhibit the highest affinity,
although one would not expect them to differ too
much from the highest-affinity ones. The SELEX
results show that the second position is the least
conserved; an observation that agrees with predic-
tions made by SAMIE. In the same paper, Lutfiyya
et al. reported the binding sites for three other
genes that are regulated by MIG1 and/or MIG2.
The measured binding affinity of MIG proteins to
these sites is not as high as to that of SUC2-A. All
the three sites are predicted to be in the top 5% of
SAMIE’s list of targets.

Evaluation on the known in vivo ADR1-binding site

We repeated the above analysis for the binding
site of the ADR1 protein, but the results were not
as good as with the MIG proteins. In particular,
although the assumed binding site in the regulat-
ory region is 50-TTGGAGA-30, our consensus
sequence matches only four of these seven

Figure 4. The weighted LOGO of the yeast zinc-finger
proteins MIG1 and MIG2. This LOGO plots all possible
nucleotide targets, weighted by the probability of inter-
action, as it is calculated by SAMIE. The naturally
found binding site with the highest affinity to the MIG
proteins is 50-GCGGGGA-30.40
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nucleotides (i.e. positions 2–4 and 6). Yet, the natu-
ral binding site ranked at position 1151 or in the
top 7% of all possible 16,384 heptanucleotides.
NMR studies on ADR1 (free and bound to specific
DNA) indicate that this transcription factor utilises
only amino acid positions 21, þ3 and þ6 of finger
1 and amino acid position 21 of finger 2 to target
the 50-GGAG-30 subsite. According to SAMIE_C6,
this is the second preferred subsite of this protein
(among 256 possible; the first has G instead of A
at the third position).

The fact that SAMIE is not able to predict the
complete ADR1-binding site effectively may reflect
the strong deviation from the EGR pattern of con-
tacts. In fact, it is known that a region amino-
terminal to the first finger is essential for the
binding of the protein.42 Nonetheless, SAMIE
predicts correctly the 4 bp subsite for which the
zinc-finger contacts are conserved. This observ-
ation indicates that its underlying model (or recog-
nition code) should be consistent and its
predictions could be useful even for more distantly
related zinc-finger proteins.

Evaluation on the known in vivo Tramtrack-
binding site

Tramtrack is another member of the Cys2His2

protein family and it is probably one of the best
studied genes in Drosophila. It regulates the
developmental gene fushi-tarazu. Like the MIG
and the ADR1 proteins, it contains two zinc-
fingers. Tramtrack provides an interesting test
case, mainly because its co-crystal structure has
been solved and we know that its contacting
scheme is slightly different from that of the EGR.43

In particular, the amino acid position þ6 of finger
2 as well as the amino acid position 21 of finger 1
do not participate in the binding. The base at
position 6, which is normally contacted by the
amino acid residue at position 21 of finger 1, in
the case of Tramtrack is contacted by the amino
acid residue at position þ2. The protein in the
crystallised complex is bound to the sequence 50-
AGGAT-30, which is contained in the promoter
region of the fushi-tarazu gene. The heptanucleotide
sequence around this region is 50-AAGGATA-30.

We used SAMIE_C6 to predict the 7 bp binding
site of Tramtrack under an assumed pattern of con-
tacts identical with that of the EGR. The resulting
weighted consensus sequence is presented in
Figure 5. The prediction agrees with the naturally
occurring binding site (i.e. 50-AGGAT-30)43 and the
agreement even extends to the base that is
upstream of that in the genome. The prediction dis-
agrees with the base downstream of the binding
site in the genome (SAMIE_C6 predicts C or T
instead of the naturally found A). But the crystal
structure shows that this last base does not interact
with any amino acid residue. Nonetheless, the
naturally found 7 bp site ranked at position 67 of
SAMIE’s list (or in the top 0.4%).

Interestingly, Figure 5 depicts the subsequence
50-AGGA-30 (in the middle) as the part with the
strongest signal. These are the exact base positions
where the two fingers have an identical pattern of
contacts to the EGR protein. The first base position
does not exhibit any strong preference, agreeing
with the observation that amino acid position þ6
of finger 2 does not contact the base at this position
(which, in fact, happens to be A in the natural site).
Similarly, the crystal structure shows there is no
amino acid residue contacting the last base (pre-
dicted to be C or T by SAMIE; naturally found to
be A).

All the above observations show that SAMIE can
predict the natural-binding site of a protein very
accurately, even if it deviates slightly from its
learned pattern of contacts. It indicates that minor
docking rearrangements, although they change the
overall pattern of contacts, can still allow for a
reasonable prediction of a binding site.

Correlation with measured energy data

One of SAMIE’s characteristics is that it associ-
ates the frequencies of the observed contacts to the
binding energies of the corresponding interactions.
If we assume that the weight matrix that is calcu-
lated by SAMIE corresponds to the real energetic
potentials of the base–amino acid contacts†, then
we would expect that the measured binding con-
stants, KA, will be related to the energy values, H,

Figure 5. The weighted LOGO of the Drosophila zinc-
finger protein Tramtrack. This LOGO plots all possible
nucleotide targets weighted by the probability of inter-
actions, as it is calculated by SAMIE_C6. Interestingly,
TTKB recognises only the 50-AGGAT-30 subsequence in
vivo.43

† There are two points worth noting, here. First,
equations (1) and (3) lack the temperature parameter that
is present in the Boltzmann distribution: i.e. we assume a
constant temperature for all experiments. Second, the
energy values of each base–amino acid contact have
been adjusted to an arbitrarily defined zero point; but
this does not alter the probabilities calculated from these
equations.
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according to the formula:

KA / e2H ð4Þ

Thus, if SAMIE’s values correspond to the real
binding energetic potentials, then the correlation
coefficient between the measured association con-
stants and SAMIE’s predicted probabilities should
be high. There are a number of examples in the
literature where binding constants have been
measured for EGR-derived proteins and various
DNA targets, and we use them for further
evaluation of SAMIE.

We generally use the correlation coefficient
statistic to measure the agreement of the observed
versus the predicted values. When the measured
data are limited and they consist mainly of high-
affinity pairs, then the correlation of the measured
versus predicted energy is evaluated. When both
high-affinity and low-affinity pairs are included,
though, the evaluation will be done on the corre-
sponding probability (or, equivalently, KA) values.
The reason we prefer to use the probabilities in
this case is that it is not very important for a pre-
diction method to be accurate in the low-affinity
states, which have large energies and diminish the
correlation coefficient unduly.

Comparison with the data from Hamilton et al.44

As a first test, we use the data reported by
Hamilton et al. on the wild-type EGR1 protein
bound to various DNA targets.44 Should our
model be consistent, one would expect that it will
be able to predict well at least the specificity of the
wild-type protein to these targets. Hamilton et al.
reported the ratios of the dissociation constants to
15 DNA targets relative to the wild-type DNA
target. We use these ratios to calculate the corre-
sponding energy differences (see equation (4)).
Then we calculate the predicted energy differences
for the same targets, using the SAMIE_C6 weight
matrix (Table 2). We find that the correlation coeffi-
cient between the two sets of values is R ¼ 0.75,
P , 0.01. This represents quite a good fit to the
data, especially given the fact that accurate
measurement of KD was not possible for some of
the targets.44 The R value for the KA terms on
EGR1 is 0.69.

In the same paper, Hamilton et al. reported the
ratios of the dissociation constants for the WT1
wild-type protein to 18 DNA targets. WT1 protein
belongs to the Cys2His2 zinc-finger family but,
compared to EGR, it has one additional finger.
The sequence of the three last fingers of WT1 is
very well conserved compared to the three fingers
of the EGR1 proteins. We repeated the above
analysis using the WT1 data and we found that
our predictions correlate strongly with them too
(R ¼ 0.76, P , 0.001). The R value for the KA terms
on WT1 is 0.65.

The strong correlation between SAMIE’s predic-
tions and measured energy values for the two

wild-type proteins and various targets is indicative
of the potential of our model. Indeed, it seems that,
given sufficient training data, which are entirely
qualitative, SAMIE can determine a quantitative
model, or P-code, that can predict the correspond-
ing energy values fairly well.

Comparison with the data from Segal et al.45

We extend the analysis in predicting energy
values for variants of the EGR family. Segal et al.
reported the KD values for a number of such
variants.45 For nine of these proteins, KD was
measured for two alternative DNA sites. In two
cases, the selection data in the training set contra-
dict the measured values directly or they are not
sufficient to model the corresponding interactions
accurately. In the case of the protein srsddlvr
bound to gcg and gag targets, the measured KD

values are 9 and 6, respectively. In other words,
this protein binds the same or stronger to the latter
target. According to the crystal structure, this
means that the Asp at position þ3 of the finger
contacts the A in the middle position the same or
more strongly than a C at the same position. Our
combined dataset that was used for the training of
SAMIE (i.e. COMBINED_6) contains 82 examples
with Asp at position þ3 and a C is found in the
second base position in all cases (Table 5). We do
not know the source of this discrepancy between
the data from the randomisation experiments and
the measured values. It may be that the particular
protein variant deviates strongly from the pattern
of contacts observed in the crystal structure. In
any case, we excluded this example from further
analysis.

In the second case (i.e. protein srsddlvr bound to
ggg and gtg), the relative KD value between the two
targets is greater than 233 (the reported KD values
are 6 and .1400, respectively). That order of
preference agrees with our dataset, where Lys at
position þ3 clearly favours G over T in the middle
position (14 G versus one T), but the magnitude
cannot be estimated accurately from our current
training set. Thus, this example was excluded
from further analysis.

For the remaining 14 sequences (seven pairs)
with reported KD values, the difference between
the experimentally measured relative energies and
the SAMIE’s predictions correlate very well
(R ¼ 0.82, P , 0.025). The R value for the KA terms
on all sequences (not pairs) is 0.79.

Comparison with the data from Miller & Pabo16

More recently, Miller & Pabo used the wild-type
EGR protein and the mutant D20A to measure the
relative binding affinity for the trinucleotide
targets GNG and GCN.16 D20A has an Asp to Ala
replacement at position þ2 of finger 1 with respect
to the wild-type protein. The amino acid replace-
ment is expected to affect the overall binding
affinity of the protein due to the contact of the
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replaced amino acid to the overlapping base (G).
However, if the two proteins contact the DNA in
the same way (i.e. the pattern of contacts for the
D20A is that observed in the crystal structure),
then the replacement should not affect the speci-
ficity of this protein to the DNA targets used in
the study. This is because, according to the crystal
structure, the nucleotide positions that vary are
not contacted by the amino acid at position þ2 of
finger 1. Consistent with that, SAMIE_C6 predicts
that the Asp to Ala replacement at position þ2 of
this finger should result in a sixfold increase of
the dissociation constant for all seven studied tar-
gets. However, the KD values reported in that
paper for the two proteins are practically the
same. This can be explained if one assumes that
the amino acid residue at position þ2 of finger 1
does not contact the base at position 10 of the
DNA target, thus not contributing to the binding
energy at all. In fact, the refinement of the crystal
structure has shown this amino acid position to be
at marginal distance from base position 10 with
respect to hydrogen bond contacting potentials.28

Furthermore, their data show that protein D20A
has a considerably low dissociation constant
towards DNA target GCT. This fact cannot be pre-
dicted by a simple recognition code if one assumes
a conserved pattern of contacts. The authors also
solved the co-crystal structures of the D20A protein
bound to two different DNA targets (GCG and
GCT). They found that, overall, the D20A main-
tains the same contacting scheme, although they
found a less ordered complex around bases 10
and 11 (note that base 10 is the base that is
expected to be affected most by the Asp to Ala
replacement). The authors conclude that their find-
ings cannot be explained by a “simple recognition
code”.

We use equation (4) to predict the association
constants for the two proteins and the seven DNA
targets, using SAMIE’s energy values (Table 2;
Figure 2). Then we compare these predictions
with the observed values (i.e. association con-
stants) and we find them to be highly correlated
(R values of 0.93 and 0.81 for the wild-type and
D20A protein, respectively; P , 0.01 in all cases).
This might seem surprising; however, we note
that the published KD values for the two proteins
are also highly correlated (R ¼ 0.87, P , 0.01). In
fact, apart from the GCT target, the two proteins
agree very well on their KD values (R ¼ 0.94,
P , 0.005). The R value for the energy terms on
D20A is 0.62; on Zif268 is 0.56, and on both is 0.58.

Comparison with the data from Bulyk et al.19,46

Determination of the dissociation constants of
various EGR-derived proteins against all possible
trinucleotide targets has been performed with the
use of microarray technology.46 In this study, the
wild-type EGR protein and four variants with
amino acid substitutions on the middle finger of
the protein were used to bind to a microarray that

contained all possible trinucleotide targets for the
middle finger. Assuming that the intensity of the
signals corresponds to the affinity of the inter-
actions, the authors calculated the dissociation con-
stants using these intensity values. We analysed
these data and compared their results with
SAMIE’s predictions.

In their first study,46 there are ten targets
reported for the wild-type protein, but only seven
of them exhibited high affinity (according to the
authors, the other three that were reported exhibit
lower affinity and/or they were used as negative
controls). SAMIE_C6 ranks the first six of the
seven high affinity targets at position 8 or higher
(out of the total 64 possible trinucleotides). The cor-
relation coefficient between the energies predicted
by SAMIE_C6 and the logarithms of the ten
measured KD values is 0.61, P , 0.05; the conver-
sion of the KD values to energies was done accord-
ing to equation (4). This result also shows very
good correlation between experimental energy
measurements and SAMIE’s predictions for the
high-affinity sites. Furthermore, if one compares
the measured KA values for the entire set of 64
triplets19 with the predictions from SAMIE, the cor-
relation is 0.61. While not as high as some of the
examples described previously, this is still a very
good correlation between measured and predicted
binding constants over the entire range of highest
to lowest-affinity sites.

One of the four mutant proteins analysed in that
paper is RGPD (the amino acid residues corre-
spond to positions 21 to þ3 of the helix of the
second finger). The authors reported six high-
affinity DNA targets for this protein in their first
study. The first five of them rank at positions 1–5
according to SAMIE, although SAMIE’s ranking
order is different from that reported. The corre-
lation coefficient, calculated like before over the
measured and predicted energy data is 0.73,
P , 0.10. The LOGO of all binding sites weighted
by SAMIE’s probability of interaction (Figure 6) is
very similar to the one presented in that paper.
The correlation of the measured KA values to those
predicted for all 64 triplets is 0.99. Notably, finger
2 of the protein RGPD (i.e. the finger under study)
differs from the corresponding finger of the wild-
type protein in all “contacting” amino acid resi-
dues, except position 21 of the helix (Arg). The
fact that SAMIE can predict the binding affinities
of this mutant protein to the entire collection of
low and high-affinity sites extremely well demon-
strates the potential of the probabilistic algorithms
for modelling the protein–DNA interactions.

The results of the analysis are similar for the
mutant protein REDV. The authors report the KD

values for six targets,46 but only two of them really
exhibit high affinity (GCG and GTG). SAMIE_C6
ranks these two targets at the two topmost
positions of its list. Furthermore, we find that
SAMIE’s predicted energy values for the six
reported targets correlate very well with the
experimental values; R ¼ 0.80, P , 0.05. The six
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reported targets ranked in the top nine positions of
SAMIE’s list. We calculated the LOGO of all
predictions (weighted by SAMIE’s probabilities;
Figure 6) and we find it to be very similar to that
presented (weighted by relative affinity of the
high-affinity targets; see Bulyk et al.46).
Furthermore, the correlation between measured
and predicted KA values for all 64 triplets is
0.73.

The LRHN shows less specificity than the others,
with 13 high-affinity sites. Even so, the predicted
consensus sequence matches that derived from the
experiments, TAT, and the overall correlation
between predicted and measured KA values is 0.56.

The protein KASN shows practically no
specificity, and no consensus binding sequence
emerged from the experiments.46 All of the
measured KD values were at least 83 times higher
than that of the wild-type protein to its preferred
site. Not surprisingly, SAMIE does not predict the
binding affinities well in this case, with a corre-
lation of only 0.16 for all 64 triplets. This result is
consistent with the notion that the predictions
from SAMIE are best for those proteins with high
specificities, which includes all natural transcrip-
tion factors.

Comparison of SAMIE with other methods

In this section, we compare SAMIE’s prediction
accuracy with that of other quantitative and quali-
tative models in order to assess its strengths and
its possible weaknesses. For the evaluation, we
use the SELEX and phage display dataset(s).

Comparison with other quantitative models

We compare SAMIE_C6 with the two currently
available quantitative models: that presented by
Suzuki and colleagues10,47 and that from Margalit’s
group.7,13 A third approach, followed by Kono &
Sarai,12 is very similar to that of Margalit’s,7,13 in
the sense that the scores for the base–amino acid
contacts are calculated to be proportional to the
logarithm of the frequencies in the training set.
The training sets for the two groups consist of 53
(Margalit’s) and 52 (Sarai’s) non-redundant
co-crystal structures. The main difference is that
Margalit’s group is considering contacts between
bases and amino acid side-chains only, whereas
Sarai’s model considers also the contacts to the
DNA and protein backbone. However, when
examining the additional data provided by Kono

Figure 6. Weighted LOGOs of the DNA-binding sites of two mutated EGR fingers. The fingers correspond to protein
variants RGPD and REDV presented by Bulyk et al.46 For the LOGOs, we plot all possible nucleotide targets, weighted
by the probability of interaction as it is calculated using the SAMIE_C6 weight matrix. These two LOGOs are very
similar to those presented by Bulyk et al.46 (and reconstructed here) that are weighted by relative binding affinity.
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& Sarai,12 we did not find any significant base
preference of the amino acid residues towards
DNA in them. Another difference between Sarai’s
and Margalit’s models is in the normalisation of
the base–amino acid frequencies. Kono & Sarai
use the amino acid frequencies in the training set
as prior probabilities, whereas Margalit’s group
derives theirs from the SWISS-PROT database.
Unlike Suzuki’s and Margalit’s groups, Kono &
Sarai do not provide the final scoring matrix for
their method. Thus, it is very difficult for us to
evaluate their model and compare its predictions
with those made by SAMIE.

For the comparison of SAMIE with the other two
methods, we use the SAMIE_C6 weight matrix and
the latest models published by these groups. We
(re)form their data into weight matrices equivalent
to SAMIE’s, according to the many-to-one model
of interactions. Then, for each vector in the
SELEX_6 and PHAGE_6 datasets, we rank all
possible variable sequences with respect to their
score towards the fixed sequence (see Figure 9).
The score is calculated as the sum of scores of indi-
vidual base–amino acid contacts. For SAMIE_C6,
this score represents an estimate of the binding
energy of the interaction, which constitutes one of
the advantages of our method. The specificity
index and the success rate are calculated as before
(see Materials and Methods). The only difference
is that in this case the corresponding rankings are
based on the sum of weights instead of the prob-
ability values. This results in an underprediction
of the phage display data (e.g. SAMIE’s SR0.1

value drops to 0.875 from 0.903; see Table 1). This
is unavoidable, though, since the other two models
do not provide a method for calculating the bind-
ing probabilities. The reason for the underpredic-
tion is that ranking phage display data according
to score treats all amino acid residues as equi-
probable. This is not true, even if the randomis-
ation scheme for each amino acid position in the
phage display experiments was NNN, where N
stands for A or C or G or T and each N refers to a
codon position. The results are presented in Table 3.

In terms of success rate, Suzuki’s model is pre-
dicting the SELEX data better than the other two
methods. It ranks correctly 88 vectors in the top
10% of their list (SR0.1 ¼ 0.917). In comparison,
SAMIE_C6 ranks correctly 86 vectors
(SR0.1 ¼ 0.896) and Margalit’s model35

(SR0.1 ¼ 0.365). However, on average, SAMIE_C6
has a better specificity index (95.4 compared to
91.2 of Suzuki’s model and 80.9 of Margalit’s
model). On predicting phage display data,
SAMIE_C6 out-performs the other two methods
with SR0.1 value of 0.875 and SIavg of 96.3. Interest-
ingly, although Suzuki’s model has a higher suc-
cess rate than Margalit’s on phage display data,
the latter has better average specificity index
value. Finally, on the overall performance
SAMIE_C6 is clearly better than the other two.
Suzuki’s model has a better SR0.1 value than
Margalit’s (0.696 compared to 0.517), but they both
have about the same average specificity (SI of 85.6
for Suzuki’s model compared to 84.2 for Marga-
lit’s).

SAMIE_C6 and Suzuki’s model predict SELEX
data with similar high levels of accuracy. This is
interesting, since SAMIE is a data-driven statistical
mechanical approach, whereas Suzuki’s model is
based on the chemical and stereochemical proper-
ties of the base–amino acid contacts. The fact that
the two can predict well the SELEX data supports
the idea that common principles might exist that
govern these interactions; and, if so, we might be
able to formulate them in a mathematical way.
This is supported further by the fact that the sub-
matrices of SAMIE_C6 and Suzuki’s model for the
contact between amino acid position 21 and base
position 3 are correlated (R ¼ 0.56, P , 0.10)†. The
same is true (although the R value is smaller) for
the weight submatrices that correspond to the
contact between amino acid position þ3 and base
position 2 (R ¼ 0.41, P , 0.05). These are the only
two single contact positions (see Figure 1).

Suzuki’s model for the EGR protein family pre-
dicts that the submatrices of certain base–amino
acid contacts should be related. In particular, the
submatrix for amino acid position 21 of the helix
should be identical with that of position þ6 (both
contacts involve large amino acid residues only).
According to SAMIE_C6, the weight matrices for
these contacts have the highest correlation coeffi-
cient value (i.e. R ¼ 0.4, P , 0.005). Although the
probability value is low, the correlation coefficient
is not high enough to consider these two contacts
identical. All coefficients between the submatrices
of SAMIE_C6 that correspond to the modelled con-
tacts show positive correlations (R values between
0.18 and 0.4, and P , 0.05 and ,0.001). This
reflects the fact that each amino acid has prefer-
ences for only certain bases, and vice versa, but the

Table 3. Prediction scores of the available quantitative
models

SAMIE_C6 SUZUKI
MARG-
ALIT_01

Evaluation set SR0.1 SI SR0.1 SI SR0.1 SI

SELEX 6 0.896 95.4 0.917 91.2 0.365 80.9
PHAGE 6 0.875 96.3 0.620 83.7 0.570 85.3
COMBINED 6 0.880 96.1 0.696 85.6 0.517 84.2

Currently available quantitative models are compared in
terms of their ability to predict SELEX and phage display data.
The models are: (a) SAMIE_C6, (b) the one presented by Suzuki
and colleagues10,47 and (c) the one from Margalit’s group. For the
evaluation of the accuracy of the predictions the success rate
and the specificity index (mean value over all predictions) are
used, as they are defined in Materials and Methods.

† The correlation coefficient was calculated only on the
base–amino acid pairs that Suzuki’s model permits
contact.
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correlations are low because each position also has
differences in their contacts. Those similarities and
differences are embodied in Suzuki’s chemical and
stereochemical merit points and allow it to do a
fairly good job of predicting SELEX results. But
SAMIE has the advantage of optimising the par-
ameters of the model on the basis of experimental
data.

We note that Margalit’s model, by design, does
not take into consideration the position-variation
of the base–amino acid contacts. It consists of a
single weight matrix, which is used to model any
contact, regardless of its position in the protein/
DNA. We believe that this “averaging over all con-
tacts” constitutes one of the limitations of this
model and is responsible for the somewhat lower
performance compared to the other two.

Comparison with the qualitative model(s)

We implemented the qualitative model for the
EGR protein family, which can be viewed as a list
of position-specific “permissible” base–amino acid
contacts. This model was initially presented by
Choo & Klug15,31 and Pabo and colleagues
later.14,16,34 The models proposed by these two
groups, however, are different with respect to the
set of observed/permissible contacts they include.
In fact, the contacts included in both models are
less than half of the total number. Giving the
“benefit of the doubt” to the qualitative modelling,
we used the composite set of permissible base–
amino acid contacts (Table 4). This set is based on
the Tables presented by Choo & Klug15 and by
Miller & Pabo,16 respectively. We tested this model
on our COMBINED_6 training set and we found
that it can predict only 61.1% of all observed
base–amino acid combinations (i.e. 1228 out of the
total of 2009). In other words, about 40% of the
experimental data included in our set are not cata-
logued in either of the two qualitative models. We

must emphasise, though, that the combinations
contained in the COMBINED_6 dataset are only
“inferred” contacts; that is, if one assumes a pat-
tern of contacts identical with that found in the
EGR co-crystal structure.28 Of course, this is not
the case for all of them. For example, in some
cases the amino acid residue might be too far
away to form a bond with the base. However, the
fact remains that all of these combinations are
observed in selection experiments, yet the quali-
tative models were not able to predict them.
Finally, we found that the composite qualitative
model is able to predict correctly only 195 of the
820 single-finger examples (or 23.8%) in the
COMBINED_6 set. In this case, we consider a pre-
diction “correct” if all observed base–amino acid
combinations are listed in the composite quali-
tative model; each of the individual models does
worse than this. This shows that the majority of
interacting fingers and sites obtained in in vitro
selection experiments are not accounted for by the
simple, qualitative models. In contrast, the quanti-
tative P-code model allows for all possible com-
binations of fingers and sites, and the predicted
rankings match the observed data quite well
overall (Table 3).

Discussion

The present study addresses the problem of
modelling protein–DNA interactions. Our thesis
is that a probabilistic “recognition code” (or
P-code) can model such interactions accurately
enough for prediction purposes. We develop a
probabilistic algorithm, SAMIE, that can “learn”
the contact-specific, base–amino acid energetic
potentials from data derived from randomisation
experiments (SELEX and/or phage display).

The underlying theoretical model of SAMIE is
based on statistical mechanics theory. According

Table 4. The composite qualitative model

Position in DNA

1 2 3 4

C b P C b P C b P C b P

A Q N S Q A
H

C L D D S
T
V

G S R K H K R D S
T F

T S K A T Q N L S D
T S T

V

The qualitative model can be viewed as a list of position-specific, permissible base–amino acid contacts. Two qualitative models
have been proposed so far: one by Choo & Klug15,31 and another by Pabo and colleagues14,16,34 This Figure presents the permissible
contacts that each group proposes. The contacts proposed by one of the groups only are in the columns marked C and P for Choo’s
and Pabo’s models, respectively. The contacts that are present in both models are in the columns marked with b. Interestingly, less
than half of the total number of valid contacts are proposed by both groups.

716 Probabilistic Protein-DNA “Recognition Code”



to our model, the probability that a fixed com-
ponent (protein or DNA) will select a given
variable component (DNA or protein, respectively)
from a pool of randomised molecules is defined by
the Boltzmann distribution (equations (1) and (3)).
The energies constitute a weight matrix, which
associates every base at a particular DNA target
position with every amino acid at the correspond-
ing “contacting” position(s) of the protein. The
values of the weights in this matrix (i.e. the
parameters of the model) are estimated from the
base–amino acid frequencies observed in
randomisation experiments (SELEX and/or phage
display), following the steepest ascents method.
SAMIE constitutes essentially a maximum likeli-
hood approach for the estimation of the parameters
(see equation (6)). The exact “contacting” amino
acid positions need not be known a priori, although
knowledge of them helps to reduce the number of
parameters of the model. Here, we restrict the
training to those contacts that have been observed
in the co-crystal structures of the EGR protein.27,28

We further make the assumption that the base–
amino acid interactions are additive over all con-
tacts. In other words, we assume that the contacts
are independent and therefore contribute addi-
tively to the total binding energy. We know that
this assumption is not exactly valid,18,19 but even
in those studies the data show that additive models
can be very good approximations.20 For practical
purposes, it is usually sufficient for it to hold only
for the high-affinity states, where it tends to hold
fairly well.17,20 Nevertheless, our model is fairly
general and it can represent both additive and
non-additive interactions adequately at the cost of
an increased number of parameters that needed to
be estimated.

The performance of the model derived from
SAMIE was evaluated on several different datasets.

Self-test

The training on each of the six datasets resulted
in a different SAMIE model. Each of these six
models is tested initially on predicting their train-
ing datasets. All SAMIE models were able to pre-
dict “correctly” 85% or more of the corresponding
training vectors. In this context, correctly refers to
the success rate that we define in Materials and
Methods. Practically, it means that in 85% of the
training vectors, the randomised counterpart of
the vector was ranked by SAMIE in the top 10%
of all possible randomised targets. Of course, test-
ing performance on the training data runs the risk
of over-fitting the parameters and obtaining arti-
ficially good results. We do not think that is a
problem, because the number of examples greatly
exceeds the number of parameters; in the
COMBINED_4 and the COMBINED_6 datasets
there are 2009 and 3612 base–amino acid combi-
nations, respectively, and the SAMIE_C4 and
SAMIE_C6 models have only 320 parameters.
Nevertheless, the most important performance

evaluations are on data not included in the training
set.

The results of the self-test prove that our model
is internally consistent, and confirm our notion
that training on composite dataset(s) (i.e. SELEX
and phage display vectors) results in a generally
better model.

Evaluation on naturally found binding sites

We tested the ability to predict the naturally
found binding sites of EGR as well as other zinc-
finger proteins. Out of the twenty-four 10 bp long
in vivo DNA sites present in our database for the
EGR protein, SAMIE was able to rank 21 in the
top 0.2% of all potential binding sites. The remain-
ing three putative target sites rank only in the top
6%, but at least one of those is unconfirmed and
there are higher-ranked alternative sites in the
proximity in the genome.

We tested the prediction ability for proteins that
are not related to the mammalian EGR family,
apart from the fact that they all contain the Cys2-
His2 motif. We used three well-characterised
proteins, the yeast transcription factors MIG1/
MIG2 and ADR1 and the Drosophila TTKB
(Tramtrack). All of these proteins contain two
zinc-fingers (compared to the three present in the
EGR proteins) and in the case of ADR1 and TTKB
a different pattern of contacts has been observed
for one of the two fingers (there are no structural
data available for the MIG proteins). In the case of
the yeast transcription factors MIG1 and MIG2
(they are identical with respect to the “contacting
amino acid residues”), SAMIE_C6 is able to predict
correctly all but the last nucleotide of the 7 bp long
DNA consensus target site. All of the known
naturally occurred MIG target sites are ranked in
the top 5% of SAMIE’s list, and the rankings of
bases in each position correspond closely to those
obtained in SELEX experiments.40 In the case of
ADR1, SAMIE_C6 was able to predict correctly
the 4 bp subsite that is believed to be contacted by
one of the two fingers, and the in vivo target site
ranks in the top 1% of all possible sites. In the case
of TTKB, SAMIE_C6 predicts correctly all but the
last nucleotide of the 7 bp long target. Moreover, it
depicts correctly the 4 bp long subsite that is
known to be significant for the binding, and the in
vivo consensus sequences ranks in the top 0.4%.

These examples show that SAMIE’s predictions
can be very useful for estimating the binding
specificities of EGR proteins, and even for proteins
that are not members of the EGR family but use
the Cys2His2 motif for DNA binding. There are
several reasons why the predictions are not even
better than these results. First, even though there
are many examples of SELEX and phage-display
combinations reported in the literature, more data
should provide more accurate estimates of the
parameters. Second, we know the additivity
assumption is not completely accurate and so
limits our prediction ability. But the fact that we
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do fairly well indicates that the additive model is a
reasonable approximation. Third, we know that for
some proteins the contacting interactions vary,
which will limit our accuracy. And in some cases,
such as ADR1, additional amino acid residues out-
side the zinc-finger contribute to binding speci-
ficity. And fourth, the in vivo sites that we attempt
to predict may be influenced by other constraints,
such as overlapping sites for other proteins or
cooperative interactions that modify the interaction
of the EGR protein. But, despite these potential
problems, the probabilistic model, and the SAMIE
method of determining the parameters, appear
quite promising for providing reasonably reliable,
quantitative predictions of binding site speci-
ficities, at least for EGR proteins and perhaps,
with appropriate data, for other families as well.

Correlation with measured binding energy data

One of the advantages of the P-code model is
that it provides quantitative predictions for relative
binding energies. This allows us to predict the
effects of variations, in either the DNA or protein
sequence, on the interaction energy. We compared
SAMIE’s predictions of the binding energy changes
with experimentally determined values for DNA
targets bound by the EGR protein and its variants.
In most cases, the SAMIE predictions are in close
agreement with the experimental values. Corre-
lation coefficients (R ) between the measured KA

terms and those predicted by the SAMIE_C6
model are generally greater than 0.7, and some-
times much higher. The cases with lower corre-
lations are usually due to an overall low
specificity of the protein to the DNA targets (non-
specific binding).

Comparison with other models

Other currently available protein–DNA inter-
action models include two† that are quantitative
and two that are qualitative. These terms refer to
the way that the models represent the base–amino
acid interactions. The quantitative models assign a
numeric value (“weight”) to these interactions,
whereas the qualitative models catalogue them as
permissible or non-permissible. The qualitative
models can be considered as a degenerate form of
quantitative, where the weights of the interactions
have been adjusted to either 1 (permissible) or 0
(non-permissible)‡. Any quantitative model can be

transformed into qualitative, by setting a threshold
to separate the permissible from the non-
permissible contacts.

All currently available models assume energetic
additivity of the individual contacts. The most
important reasons are that: (a) in the majority of
the cases the interactions are approximately
additive (especially in the high-affinity states);
(b) data limitations make modelling of non-
additive interactions impractical; (c) simplicity of
the additive “codes”. However, we note that one
of the advantages of SAMIE is that its underlying
principles are quite general and thus it can accom-
modate non-additive interactions at a cost, which
are more parameters to be estimated.

The first quantitative model, developed by
Suzuki’s group,10,47 is based on a set of chemical
rules for each base–amino acid pair (that are inde-
pendent of the family modelled) and a set of
stereochemical rules derived from co-crystal struc-
tures (protein family-specific). The combination of
these sets of rules generates a score for any given
protein–DNA pair. This score can then be used to
rank DNA targets according to their binding prob-
abilities and predict possible binding sites. The
limitations of this model are the requirement for
the crystal structure and the fact that the rules (or
weights) have been assigned in a semi-arbitrary
way. Comparison of SAMIE_C6 with this model
showed that, in terms of success rate, Suzuki’s
model is slightly better in predicting SELEX data,
and SAMIE_C6 was significantly better on phage
display data and the combined data. In terms of
specificity index (an evaluation measure intro-
duced by Suzuki et al.10) SAMIE_C6 was substan-
tially better on all sets.

The second quantitative model we compared
SAMIE with was that developed by Margalit’s
group.7 For this model, the score of each base–
amino acid pair is derived from the observed
frequency of this pair in a non-redundant set of
crystal structures (training set). The score of the
individual contacts is calculated according to the
formula:

Sij ¼ ln½fij=ðfifjÞ� ð5Þ

where fij is the pair frequency of amino acid i and
base j, fi is the frequency of amino acid i
(i ¼ 1,…,20) in the SWISS-PROT database and fj is
set to 0.25 for each base j ( j ¼ 1,…,4). The original
model was recently refined by including more con-
tacts in the training set.13 We compare SAMIE_C6
with the latter model because, in agreement with
the authors, we found that it performs better than
their initial model. In all cases, SAMIE_C6 per-
forms better than Margalit’s model. However, in
terms of specificity index, Margalit’s model is
better than Suzuki’s in predicting the phage
display data.

One disadvantage of Margalit’s method is that it
assigns very high “penalties” (i.e. very low
weights) to certain base–amino acid pairs on the

† The available quantitative models are, in fact, three
but two of them, that proposed by Margalit7,13 and that
due to Kono & Sarai,12 are very similar to each other.

‡ The representation of permissible and non-
permissible contacts with 1 and 0, respectively,
corresponds to assigning probability values. In order to
be consistent with our previous notation (i.e. weights
correspond to energy values), we can assign the value of
0 (or any number) to the permissible contacts and the
value of þ1 to the non-permissible contacts.
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grounds that they do not have contacting poten-
tials. We believe that this might affect the predic-
tive power of this model in some cases. For
example, Gly with no hydrogen bond donor/
acceptor potential has been assigned the most
negative score. This prevents it from appearing in
many of the model’s predictions. Yet, by being a
small, non-polar amino acid, Gly can be tolerated
in most cases. In our training set, there are 151
examples with Gly present in a “contacting” pos-
ition (Table 5). Another important limitation of
Margalit’s model is that it assigns the same score
to each base–amino acid contact, irrespectively of
their position in the DNA and protein. In other
words, it does not consider any stereochemical
rules (as in Suzuki’s model). The advantage of this
model over Suzuki’s, though, is that it uses a prob-
abilistic view of the data to assign the scores (i.e. it
“learns” from the data).

In terms of quantitative modelling, SAMIE com-
bines characteristics of both these models. Its
weights are position-specific, so they are adjusted
during training in a way that reflects the chemical
and the stereochemical rules. In this case, a suffi-
ciently large dataset is required for adequate train-
ing. However, unlike Suzuki’s model, there is no
requirement for a priori knowledge of the contact-
ing positions or the structural details. We expect
that given big datasets, the “neutral” positions (in
terms of binding specificity) will be evident during
the training process. Also, like Margalit’s model,
SAMIE uses a probabilistic method to assign the
scores in a non-arbitrary way.

Taking into consideration the experiment-
specific reference probabilities of the randomised

molecules is an essential part of our method and,
in our opinion, one of its major advantages over
the other quantitative models (see Comparison of
SAMIE with other methods). The other two quanti-
tative models either do not consider reference
probabilities at all (Suzuki’s model) or they use a
fixed reference probability for all data in their
training set (Margalit’s and Sarai’s models).

The two qualitative models have the objective of
identifying the preferred combinations of bases
and amino acid residues at the interacting pos-
itions. Such information can be used to predict the
binding sites for particular proteins and to design
proteins that will bind to particular sites.31 But
they do not account for the fact that a given protein
will generally bind to a family of similar sequences
with KA values that are not too different; or that a
given DNA sequence may be bound by many
different proteins. In fact, 40% of the combinations
of binding site and protein sequences that have
been reported from either SELEX or phage display
experiments are not included in the set of inter-
actions that constitute those models. And they do
not attempt to predict changes in affinity associ-
ated with sequence variations. While the relative
affinities predicted from the current SAMIE_C6
model are not perfect, they do show a reasonable
correlation that can be useful in ranking different
binding sites and predicting the effects of mutations.

Conclusions

The exploitation of the statistical mechanics
theory for the calculation of the individual

Table 5. Table of EGR frequency data

nt ¼ 3; aa ¼ 21 nt ¼ 4; aa ¼ þ2 nt ¼ 2; aa ¼ þ3 nt ¼ 1; aa ¼ þ6

A C G T A C G T A C G T A C G T

A 3 1 2 0 25 24 35 14 3 18 2 24 17 11 9 11
C 0 0 0 0 0 3 0 0 0 1 0 1 0 0 0 0
D 1 28 5 7 33 42 431 121 0 82 0 0 1 4 1 7
E 4 4 6 6 0 7 7 2 4 73 3 5 10 10 1 7
F 0 0 1 0 0 0 2 0 0 0 0 0 0 1 0 0
G 1 2 4 3 11 16 51 15 4 7 2 13 2 7 4 9
H 3 9 3 21 11 8 28 21 3 100 84 0 1 0 2 3
I 2 1 3 1 2 0 0 0 0 5 0 1 1 1 0 0
K 4 2 16 7 0 5 2 0 0 0 4 1 4 0 12 29
L 5 6 0 14 0 0 2 2 0 8 0 4 7 2 4 0
M 0 0 0 8 0 0 2 2 1 0 1 3 0 0 0 0
N 6 1 6 11 2 10 15 2 78 24 9 7 19 9 8 1
P 0 0 0 2 0 2 7 0 0 0 1 1 0 1 3 4
Q 99 0 4 8 15 16 8 8 2 3 4 2 14 0 2 3
R 14 1 337 18 7 15 11 0 0 3 2 1 12 13 801 4
S 4 3 9 12 3 47 59 52 0 50 3 27 10 30 11 30
T 15 2 11 49 19 28 22 10 0 79 1 11 47 37 55 125
V 0 0 3 3 0 2 11 3 0 24 0 10 10 15 6 12
W 0 0 0 0 0 2 4 2 0 0 0 1 0 0 0 2
Y 0 0 4 0 0 7 2 0 0 4 1 0 8 0 0 0

The data for this Table are derived from the COMBINED_6 data set. Only the combinations for the contacts found in the crystal
structure are presented. Although the two contacts from the neighbouring fingers (see also Table 2) have been added to their con-
nected ones, the data are limited in parts of the matrix.

Probabilistic Protein-DNA “Recognition Code” 719



base–amino acid “energy” values gives SAMIE a
strong theoretical basis and constitutes one of its
major advantages. Moreover, the consideration of
the background probabilities for the selected
sequences makes the whole approach more robust.
Additionally, the scores that SAMIE calculates for
each protein–DNA pair reflect directly the prob-
ability (or specificity) of the binding, which is an
additional advantage of our method. In all cases,
we find a positive correlation between the
observed data and SAMIE’s predictions. Moreover,
in most of the cases, the predicted order in the
preference of the different nucleotides agrees with
that indicated by the measured KD values. The
quantitative parameters of the model are obtained
solely from qualitative data, the reported SELEX
and phage display combinations of binding sites
and protein sequences, using a maximum likeli-
hood approach. A modified algorithm could take
into account quantitative measurements of relative
affinity for different sequences, and thereby
improve the estimates of the parameters. Currently
there is not enough quantitative data to make a sig-
nificant difference, but high-throughput methods
for relative affinity measurements will make such
data available in the future.18,46

Additivity

We would like to emphasise that energetic addi-
tivity over contacts as well as knowledge of the
structural details of the interaction are not pre-
requisites for our method. The underlying statisti-
cal framework that SAMIE is based upon is quite
general. Non-additive energetic contributions can
be modelled easily within the same theoretical
framework, by an increase in the number of
parameters. For example, if the mononucleotide
positions deviate strongly from the additivity,
whereas dinucleotide interactions do not, then we
would need a 16 £ 20 weight matrix to model
each dinucleotide contact (or equivalently this
could be modelled with a first-order Markov
chain).

Additivity is clearly not exactly true,18,19 but it
can be a very good approximation to the true
energy contributions,20 with higher correlations
than those obtained with SAMIE in this study. We
think, therefore, that the current model is limited
by lack of sufficient data, and especially quanti-
tative data, more so than by the additivity approxi-
mation. It remains to be determined how much
information is lost in this additive model, and
how much better the predictions will be with
more complex models. If the predictions can be
made significantly better, then it would be worth-
while collecting enough data to determine the
additional parameters. The current data are suffi-
cient only for the additive model, and we are
encouraged by the results obtained, although
there is clearly room for improvement.

Docking rearrangements and other
protein families

SAMIE uses a general algorithm that can model
interactions for any protein family, given sufficient
data. It does assume that the binding between
DNA sites and variants of the protein under study
use essentially a conserved pattern of contacts.
That is, each protein family uses a particular way
to contact the DNA that does not depend on the
exact identity of those amino acid residues.
Obviously, this is not exactly true: some amino
acid replacements might lead to slightly different
“dockings” and, in extreme cases, some amino
acid changes might abolish the specific binding
completely (e.g. KASN protein in the study by
Bulyk et al.19). The question of how well slight
changes can be approximated by a P-code needs
further investigation. Some of the EGR variants
that have been crystallised do show minor changes
in contacting positions,16,29 but the SAMIE predic-
tions were not affected drastically. The crystal
structure of another Cys2His2 protein that is other-
wise unrelated to EGR (i.e. TTKB) showed a
striking conservation with respect to the pattern of
contacts in one of its two fingers, but changes
were observed in the second one. Still, SAMIE
was able to predict very accurately all but the last
base of the genomic target, and it was able to
depict the most significant base positions. We do
not know at this time how similar the P-codes will
be for other families of DNA-binding proteins.
Most such families use a-helices for their DNA rec-
ognition domains, and we might expect that very
similar energy relationships will be obtained for a
variety of different protein families. The model
described by Suzuki10 implies only a few different
classes of interactions, and the results from the
EGR family indicate that we can do somewhat
better than his model by allowing for more
position-specificity in the parameters. But it may
be that only a few significantly different base–
amino acid energy matrices exist, and that the spe-
cificities of new protein families can be determined
much more efficiently by extrapolation from
existing ones.

Beyond DNA binding to gene regulation

This study developed a model, a probabilistic
recognition code (P-code), for DNA recognition
and binding by the EGR family of proteins. Such a
P-code allows for the prediction of binding sites
within a genome for all such proteins encoded in
that genome. If we had similar P-codes for every
DNA-binding protein family, it would be possible
to simply examine the genomic sequence, predict
the transcription factor proteins (which can be
done fairly easily and reliably), and then to predict
which transcription factors regulate which genes.
But it is clear that transcription factor binding to
specific DNA targets is required, but not sufficient,
for gene regulation. At least in higher eukaryotes,
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most genes are regulated by multiple factors acting
in concert, so the effect on gene expression of any
one factor may depend on what other factors are
in the same cells. And, of course, there can be com-
petition between different factors for binding to the
same sites. In addition, there are controls of gene
expression at the level of chromatin structure. The
transcription factors must have access to the DNA
in order to bind and effect expression, and that
access may be controlled by other factors, perhaps
acting over long regions. And, finally, the tran-
scription factors themselves must be expressed
and active in the cells where their effects are
manifest. Many regulatory events are post-
transcriptional, and even post-translational, and
must be accounted for to get accurate models of
gene regulation. The ability to predict DNA-
binding sites from protein sequences solves only
one small part of the total regulatory system. But
it is an important and essential part, and accurate,
or even partially accurate, predictions can serve to
focus further experimentation and analysis so as
to accelerate the deciphering of the entire system.

Materials and Methods

The data

Data of DNA bound by variants of the EGR proteins
were collected from the literature.36 The original set was
expanded to include more recently published data. It
now contains a total of 1033 examples of protein–DNA
interactions, 919 of which are non-redundant. From
these data, 322 are derived from SELEX experiments
(304 non-redundant) and 431 from phage display (399

non-redundant). In the remaining 280 experiments,
neither the protein nor the DNA was randomised.

An example of our dataset is presented in Figure 7.
Essentially, each line corresponds to a protein–DNA
interaction “experiment” and it contains the 10 bp long
target and the sequence of the three a-helices (amino
acid positions 22 through þ9 with respect to the begin-
ning of the helix). Capital and small letters designate
randomisation and fixation of the corresponding
position, respectively.

EGR proteins contain three zinc-finger motifs of the
Cys2His2 type. Each finger of this type is believed to
bind the DNA in a modular fashion, independently of
the others (except for the overlapping base).30,48 Thus,
we decided to focus our analysis on the interactions of a
single finger. Considering the interaction of a single
finger reduces the number of parameters that one needs
to estimate. Under the additivity assumption, the con-
tacts can be modelled independently and we need a
maximum of 80 parameters to model each contact.
Thus, for modelling all 12 contacts of the EGR protein
we would need 960 parameters, whereas restricting the
model in a single finger reduces this number to 320. The
six datasets we used for training SAMIE (see the section
on Training datasets and models calculated by SAMIE)
are derived from the master database.

There are two ways one can model the interactions of
a tetranucleotide target of a single Cys2His2 finger. One
is to consider the contacts from the primary contacting
finger (e.g. finger 2 for the base positions 4–7 of the
10 bp long target) and the other is to consider the two
additional contacting amino acid residues in the neigh-
bouring fingers. We call the first model one-to-one
and the second many-to-one. For a more detailed
discussion of these models, we refer the reader to the
section Training datasets and models calculated by
SAMIE.

For the construction of the datasets, we pooled the
corresponding single finger vectors from the master

Figure 7. Example of the EGR data file. Each line contains the single result of an experiment. The target DNA is fol-
lowed by the amino acid sequence of the three fingers (positions 22 to þ9 with respect to the beginning of the a-helix).
Capital letters denote randomisation and small letters denote fixation at the corresponding position.
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database, excluding those where both protein and DNA
sequences were fixed (see Figure 8; and see Evaluation
on known in vivo binding sites). After eliminating redun-
dancy, we had 293 SELEX and 319 phage display vectors
for the one-to-one model of interaction, and 366 SELEX
and 444 phage display vectors for the many-to-one
model. These datasets are named SELEX_4, PHAGE_4,
SELEX_6 and PHAGE_6, respectively. The correspond-
ing composite sets are named COMBINED_4 and
COMBINED_6.

An example of the construction of a training set is pre-
sented in Figure 8. In the 293 vectors of the SELEX_4
dataset, 116 different “proteins”† were used to select 79
different tetranucleotides. For the 366 vectors of the
SELEX_6 dataset, the corresponding numbers are 180
and 70. For the 319 vectors of the PHAGE_4 dataset, 56
different tetranucleotides were used to select 252
different proteins. For the 444 vectors of the PHAGE_6
dataset, the corresponding numbers are 59 and 361.

Note that in the case of the one-to-one model of inter-
action, the number of all possible combinations is 256
for the DNA and 160,000 for the protein sequences. In
the case of the many-to-one model, the number of all
possible amino acid combinations is even higher (206 or
64 £ 106), whereas the increase of the dataset size is very
modest. Thus, it is obvious that even with the reduction
of the analysis to single finger interactions, our datasets
are still far from complete. This is illustrated in Table 5,
which presents the frequencies of particular base–
amino acid contacts for the many-to-one model of inter-
action (COMBINED_6 data set). This Table might look
like the one presented by Mandel-Gutfreund et al.,49

with the frequencies derived from selection experiments
(instead of crystal structures) and partitioned with
respect to the contact (i.e. the position(s) of the base and
amino acid residue, respectively). We must therefore
emphasise the fact that these numbers are derived from
randomisation experiments that generally differ on their
randomisation scheme. One of the novelties of our

method is that it incorporates these experiment-specific
randomisation schemes into the calculation of the
probabilities.

Data representation

Each training vector can be encoded into two sparse
unary vectors (xN and yA ), which consist of the binary
representation of the target DNA and the contacting
amino acid residues, respectively. For the binary
representation of the four bases, we use the following
notation:

A ¼ ð1000Þ; C ¼ ð0100Þ; G ¼ ð0010Þ; T ¼ ð0001Þ

Thus, the DNA sequence AGGA can be written as:

AGGAN ¼ ð1000 0010 0010 1000Þ

or:

Nb

j ¼
1 ðj ¼ 1; 4 ^ b ¼ AÞ _ ðj ¼ 2; 3 ^ b ¼ GÞ

0 otherwise

(

An amino acid sequence is represented in an analogous
way, as a vector Ai

a, using a similar set of 20 binary digits
for the representation of the amino acid residue in each
position.

The mode of interaction between protein and DNA
residues is encoded in a “connectivity matrix”, C. Matrix
C consists of binary values: if the amino acid residue at
position i is assumed to contribute to the affinity of inter-
action by contacting the base at position j, then Cij ¼ 1,
otherwise it is 0.

Finally, using similar symbolism, we can represent the
base–amino acid energetic potential as a weight matrix
Tij
ab, where i and j denote the amino acid residue and

base positions, respectively, whereas a and b are the
residues of the protein and the DNA target in these
positions. Figure 3 illustrates the matrix T used for
modelling the interactions of a single finger of the EGR
protein family. Using this formalism, the calculation of
the additive total energy of an interaction between a
protein yA and a DNA target xN would be given by
equation (2).

Figure 8. An example of the
selection of the training vectors. In
this particular SELEX example,
only the three middle bases had
been randomised. For the SELEX_4
training set, the three four-base tar-
gets and their contacting fingers
consist three independent vectors.
Note that the first of these vectors
was subsequently excluded from
the SELEX_4 training set, since
both the DNA and the amino acid
residues have fixed values. For the
SELEX_6 training set, the same
DNA (sub)targets were considered,
but the two amino acid residues
from the neighbouring fingers were
added. In the case of the third vec-
tor, the information for the contact
of its randomised fourth base (G) is

included in vector-2, thus we consider this position as non-randomised on vector 3 (represented by the last g in the
gcgg sequence). Hence, both vectors number 1 and 3 were excluded from the SELEX_6 training set.

† Proteins here simply refers to the maximum of six
contacting amino acid residues.
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Some algorithmic aspects

Maximising the log-odds

SAMIE is an algorithm that uses data from randomis-
ation experiments (SELEX and/or phage display) to
specify the energy matrix, T, of base–amino acid
energetic potentials that maximise the log-odds of the
data. Consider a training vector (kV, F ) that consists of a
variable (kV ) and a fixed (F ) component†. We assume
that the variable component was selected by the fixed
one from a pool of randomised molecules. The reference
probability of every molecule in the pool (Pref(k0V ),
k0 ¼ 1,…,Ntot) is known. The log-odds of this selection
can be written in a way similar to equations (1) and (3):

logðPðkVlFÞÞ ¼ logðPrefðkVÞÞ2 HðkV; FÞ2 logðZÞ ð6Þ

where Z is the experiment-specific partition function,
which is calculated over all possible molecules in the
randomised pool:

Z ¼
X

k0

Prefðk0VÞe2Hðk0 V;FÞ ð7Þ

and H(k0V, F ) is the energy function, which in the sim-
plest case is additive over all contacts (see equation (2)).

For specifying the energy matrix, T, which maximises
the objective function log(P(kVlF )) over all data SAMIE
follows the steepest ascent procedure. Every free par-
ameter is incremented iteratively by a value proportional
to the gradient of the function with respect to the
parameter.

Considering equation (6), for all data, we get:

logðPðdataÞÞ ¼
X
data

logðPðkVlFÞÞ

¼
X
data

logðPrefðkVÞÞ2
X
data

HðkV; FÞ2
X
data

logðZÞ ð8Þ

Considering the sums on the right side of this equation,
we note that the first term is independent of the par-
ameters, thus its derivative would be zero. The second
term, H(kV, F ) is linear with respect to the parameters
(equation (2)), therefore its derivative would be equal to
the total number of examples (N ) times the average of
the energy in the dataset. Hence differentiation of this
term with respect to a parameter required in the gradient
merely selects the corresponding frequency as calculated
in the given data set, since all parameters occur linearly.
The last term is the partition function for a Boltzmann
distribution, and it contains a sum over all possible vari-
able counterpart sequences of an exponential of energy.
Differentiating a partition function with respect to par-
ameters appearing linearly in the energy results in the
negative of the expectation as computed within the dis-
tribution. Hence the steepest ascent process will reach a
fixed point, i.e. zero gradient), when the expectations as
calculated within the distribution match the frequencies
as calculated within the given data set. This intuitive
result is basically the Boltzmann machine algorithm for
neural network training,50 an observation that results in
some additional insights into the algorithm we propose,
but will not give in detail here.

Calculating the partition function

Finally, we need to calculate the expectation within the
distribution at any trial setting of the parameters. This
needs to be done at each step of the iterative steepest
ascents process. Naively, this would involve a sum over
all possible variable counterpart sequences, which for
an L long sequence grows exponentially as 4L for nucleo-
tides in SELEX data, or as 20L for amino acid residues in
phage display data. Depending on L, this simple
approach can be impractical. In Boltzmann machine
training, this issue is addressed by computing the expec-
tations via Monte Carlo averaging, which approximates
the sum over an exponential state space by importance
sampling. Closely related importance sampling methods,
such as the Gibbs sampler arise in standard biological
sequence analysis.51 However, we can calculate the
required expectations exactly, without recourse to
importance sampling, because our energy function has a
very simple structure.

The trick to computing the expectations exactly is to
notice that in equation (2) either the amino acid residues
(for SELEX data) or the nucleotides (for phage display
data) are fixed, leaving the nucleotides (respectively
amino acid residues) appearing linearly in H. Hence,
the sums, in e.g. the SELEX partition function, factorise
across positions. Thus the sum over 4L states reduces to
the product of sums over only four states at each pos-
ition (similarly, over 20 states for phage data). Hence,
the required expectations can be computed exactly. If
more complicated energy functions are found to be
required later, we can fall back on importance sampling
to compute the required distribution averages.

Prediction of probabilities

The calculation of the success rate and specificity
index is based on the ranking of the DNA targets of a
particular single finger sequence or vice versa according
to the predicted probabilities of the SAMIE’s model that
we examine. In order to calculate the predicted probabil-
ities of all possible tetranucleotide targets of a given zinc-
finger in a SELEX training vector, we do the following
(see also Figure 9 for an example). First, for each amino
acid residue in each contacting position of the zinc-finger
sequence, we extract the corresponding energetic poten-
tials from the weight matrix T, which comprises the
SAMIE’s model. The 16 resulting values constitute a pos-
ition-specific weight matrix for this finger. Using this
weight matrix, we can calculate the energetic potentials
of the interaction of each tetranucleotide target by sum-
ming the values of each base. The total predicted energy
is used in equation (1) to give an estimate of the prob-
ability of the interaction to every DNA target. Similar
procedure is followed for the calculation of the prob-
abilities in a phage display experiment. For SELEX
experiments, we normally use equiprobable nucleotide
background (i.e. Pn(kN ) ¼ 0.254 for every nucleotide
sequence kN ), except in the case of MIG proteins, where
the yeast GC content was used instead. For evaluation
of phage display vectors, the background probabilities,
Pa, in equation (3) depend on the randomisation scheme
that was used in the particular experiment.

Methods of evaluation

The evaluation of a prediction method is the assess-
ment of how accurately it can predict a given dataset
(evaluation set). The most interesting evaluation sets are

† In the case of a SELEX, the variable component, kV, is
the DNA and the fixed component, F, is the amino acid
sequence. In the case of a phage display, it is vice versa.
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Figure 9 (legend opposite)



those where their values have been derived/confirmed
experimentally. For SAMIE’s self-evaluation and for the
comparison of SAMIE with the other modelling
methods, we use two evaluation measures. One is the
success rate (SR0.1), which we define as the percentage
of vectors in the evaluation set that are ranked in the
top 10% of all the predictions:

0 # SR0:1 ; S0:1=Ntot # 1 ð9Þ

where S0.1 is the number of vectors that are ranked in the
top 10% of all the predictions and Ntot is the total number
of vectors. This is similar to the evaluation method that
was used previously to assess the accuracy of the bind-
ing interaction predictions.7

In order to calculate the success rate for the SELEX
vectors we do the following: for each vector in the evalu-
ation set, all possible randomised DNA sequences are
ranked with respect to their predicted probability of
being selected by the (fixed) amino acid sequence. The
probability is calculated using equation (1) (see below).
If the DNA (selected) sequence of this vector ranks in
the top 10% of the list, then we consider this a success.
The percentage of successes in the evaluation set is the
success rate. For example, in the self-test on the
SELEX_4 dataset (Table 1), 83 of the 96 DNA sequences
predicted in the top 10% of the lists of the corresponding
amino acid sequences, resulting in an SR0.1 value of
0.865. For the phage display data set, the procedure is
similar, but equation (3) is used for the calculation of
the probabilities.

The success rate can be viewed as the probability of
ranking correctly a particular selected sequence (from
the randomised pool) given the fixed sequence. An SR0.1

value of 85% means that for any fixed sequence, the
trained model has 85% probability of ranking a selected
sequence correctly, i.e. in the top 10% of the list of all
possible randomised sequences.

The second measure of evaluation is the specificity
index, which has been used in the past. It is defined by
Suzuki & Yagi as:47

0 # SI ; 100 2 n 2 m=2 # 100 ð10Þ

In this formula, n and m are the percentages of the target
sequences that score higher than, and the same as, the
real ones, respectively. For example, if the selected
sequence ranks second in the list and its score is equal
to two more sequences, then SI would be 100 2 (1 þ 3/
2) £ 100/K, where K is the number of sequences in the
list (e.g. for a trinucleotide target K is 64 and the SI of
the example would have been 96.1). This measure was
used in addition to the success rate as an independent
method of evaluation for two reasons: (a) it had been
used in the past,10,47 so the comparison with previous
studies would be straight-forward; and (b) the cutoff of
10% for the success rate is somewhat arbitrary. We note,
though, that in all cases the specificity index yields
higher scores than the success rate (see Table 3).
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